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Since the emergence of “big data” in the 1990s, efforts to use 
advanced statistical techniques to predict outcomes of inter-
est have proliferated in various social domains, education 
notwithstanding (Baker et al., 2019; Government Accoun-
tability Office [GAO], 2022). The suite of techniques used to 
forecast outcomes and inform decision-making within orga-
nizations is broadly known as “predictive analytics.” 
Although largely unseen, predictive analytics fuel myriad 
decisions within educational institutions, from college 
admissions (Hutt et al., 2019) and student retention interven-
tions (Baker et al., 2019) to resource allocation (Wayt, 2019; 
Yanosky & Arroway, 2015). Evidencing the pervasiveness 
of predictive analytics, in a survey of nearly 1,000 colleges 
and universities, 89% of respondents reported making some 
investment in predictive analytics (Parnell et al., 2018).

A key component within the vast array of predictive statisti-
cal techniques is the predictive model, a computational tool 
that maps the input set of attributes of individuals (e.g., high 
school GPA and demographic features) to their outcomes (e.g., 
college credits accumulated) in order to identify underlying 
associations and patterns in the data. The predictive model is 
especially useful with large datasets, where it is impossible or 
inefficient to identify associations and patterns manually.

In recent years, observers have raised concerns that pre-
dictive models in education may perpetuate social dispari-
ties (GAO, 2022). For instance, a model that includes 
socially relevant attributes, such as race, gender, or income, 
will often predict that students from socially disadvantaged 
categories (e.g., women in STEM) will have less favorable 
outcomes. Such a model extrapolates from prior relationships 
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between socially relevant attributes (e.g., race) and educa-
tional outcomes (e.g., graduation) that are partly shaped by 
societal injustices, such as racism, sexism, and classism 
(e.g., López et al., 2018).

In this study, we appraise predictive models within the 
higher education context by examining: (1) how predictions 
of college student success differ between racial/ethnic 
groups, (2) how model performance (accuracy) differs 
between racial/ethnic groups, and (3) the effectiveness of 
common techniques to mitigate algorithmic bias. While 
researchers and observers have noted that predicted out-
comes may differ between racial groups (Barocas & Selbst, 
2016; Ekowo & Palmer, 2017), it is also important to under-
stand how model performance varies between groups. That 
is, do models predict success more accurately for some 
racial/ethnic groups than others? This could occur if, for 
instance, the data for racially minoritized students contain 
more errors, if models are missing variables that are more 
predictive of success for racially minoritized students, or if 
racially minoritized students with successful outcomes are 
underrepresented in the historical data used to train the mod-
els. Moreover, it is important to examine the extent to which 
common techniques for mitigating algorithmic bias are 
effective at reducing disparities in prediction outcomes and 
accuracy between racial/ethnic groups.

The reason for focusing on racialized disparities is that 
educational attainment rates across racial/ethnic groups 
remain markedly unequal (U.S. Department of Education, 
2021). Given these inequities in educational attainment lev-
els, predictive models that are agnostic to racial bias may 
penalize groups that have been subject to racialized social 
disadvantages.

We situate our statistical analyses within relevant histori-
cal and social contexts (Zuberi, 2001), recognizing that 
racially minoritized groups are disadvantaged in the educa-
tional context through various interlocking social systems 
of oppression (Collins, 2000; Reskin, 2012). Although an 
exhaustive review is beyond the scope of this paper, we refer 
readers to examples of systems, structures, and practices that 
penalize racially minoritized groups. In the education 
domain, oppressive barriers to educational success include 
educational tracking (Oakes, 1985), deepening school segre-
gation (Orfield et al., 2012), teacher racial bias (Gershenson 
& Papageorge, 2018), racial disparities in school funding 
that track with levels of segregation (Weathers & Sosina, 
2022), and disparate punishment of Black and Latinx stu-
dents (Davison et al., 2022). Racially minoritized students’ 
educational success is also conditioned by racialized barriers 
outside education, including constraints on wealth accumu-
lation and income, which limit students’ ability to pay for 
higher education (Mitchell et al., 2019).

It is important to understand this background since the 
state of the world, which is rooted in various societal injus-
tices, affects the data distribution. These historical injustices 

condition educational opportunities and experiences for 
racially minoritized students. Subsequently, when predictive 
models make predictions on students who are racially 
minoritized, they may be predicted to fail, reinforcing his-
torical injustices. In this context, this study addresses the fol-
lowing questions:

1. To what extent do college student success predic-
tions differ between racial/ethnic groups?

2. To what extent does the accuracy of college student 
success predictions differ between racial/ethnic 
groups?

3. How effective are computational strategies in miti-
gating bias in predictions across racial/ethnic groups?

While “bias” can be conceptualized in myriad ways, we 
define “bias” using four widely used statistical measures of 
algorithmic (un)fairness (Barocas et al., 2017; Pessach & 
Schmueli, 2022). The first of these notions measures dispari-
ties in prediction outcomes between racial/ethnic groups, 
while the other three measure disparities in model perfor-
mance (or prediction accuracy) between racial/ethnic 
groups. These measures are defined in greater detail in the 
next section.

Findings from this study show that models incorporating 
commonly used features to predict college student success 
predict worse outcomes for Black and Hispanic students. 
More importantly, these prediction models are less accurate 
when predicting college success for these racially minori-
tized groups. For example, they are more likely to predict 
failure for students who actually succeed if those students 
are categorized as Black or Hispanic. With respect to bias-
mitigation techniques, those that modify the algorithms to 
incorporate fairness during the training process reduce dis-
parities in predictions between racially advantaged and dis-
advantaged groups. However, no technique effectively 
eliminates disparities in prediction outcomes or accuracy 
across any notion of fairness.

Conceptualizing Fairness

Before reviewing related literature on college student 
success prediction, we introduce relevant conceptualizations 
of algorithmic fairness or algorithmic bias. These technical 
terms, which emerge from the subfield of fairness-aware 
machine learning, refer to specific statistical notions (defined 
in a subsequent subsection). We recognize a distinction 
between statistical notions of algorithmic bias or (unfair-
ness) and practical unfairness, whereby human uses of pre-
diction algorithms may be considered “unfair.” For instance, 
a model that predicts worse outcomes for racially minori-
tized students would be considered “unfair” according to 
one statistical definition of algorithmic fairness but is not 
necessarily unethical or unjust. Such a model could, for 
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example, lead to financial aid distributions that benefit 
racially minoritized students more, which may be justified 
given these students’ generally greater sensitivity to price 
(Heller, 1997). Unless otherwise noted, in this paper, the 
terms “bias,” “fairness,” and “unfairness” refer to statistical 
measures associated with prediction algorithms rather than 
practical or philosophical notions of fairness.

Individual Versus Group Fairness

Individual fairness and group fairness are two different 
approaches to measuring fairness in algorithmic decision-
making. Individual fairness focuses on treating individuals 
fairly on a case-by-case basis. In other words, it aims to 
ensure that similar individuals are treated similarly, regard-
less of their membership in any particular group. For exam-
ple, if two individuals have similar academic records and are 
both at risk of dropping out, an individual fairness approach 
would ensure that both receive similar levels of support, 
regardless of their gender, race, or any other characteristic. 
Group fairness, on the other hand, focuses on ensuring that 
groups of individuals are treated fairly as a whole. It aims to 
address systemic, rather than interpersonal, biases and ineq-
uities that may exist within different demographic groups.

In this work, we are interested in systemic discrimination 
and oppression that leads to differential access to educa-
tional opportunity—and other resources (e.g., wealth and 
homeownership) that (re)produce educational advantages—
across racial/ethnic groups. Since our focus is on identifying 
and mitigating systemic racial disparities, we employ group 
fairness metrics. Group fairness metrics are designed to 
assess and quantify fairness at the group level, such as ensur-
ing that the outcomes of an algorithm are consistent across 
different racial or ethnic groups. This can help identify and 
correct systemic biases that may be present in the algorithm 
or captured in the data, reflecting societal inequities. 
Moreover, by focusing on group fairness, we recognize that 
any real-world datasets and systems capture societal injus-
tices that affect entire groups of people, such as racial or 
gender discrimination. In such cases, individual fairness 
may not be sufficient to address the root cause of the unfair-
ness, whereas group fairness can help to identify and correct 
these systemic biases. The final reason for using group fair-
ness measures is based on our interest in examining mitiga-
tion techniques since most of these techniques are based on 
group fairness notions.

Fairness Measures

Specifically, we employ four widely accepted notions of 
group fairness to evaluate the fairness of student success pre-
dictions across racial/ethnic groups: statistical parity, equal 
opportunity, predictive equality, and equalized odds (Barocas 
et al., 2017; Pessach & Schmueli, 2022). Although scholars 

have considered other notions of fairness, we focus on these 
four because current bias-mitigation algorithms, which we 
assess in this study, are designed based on these core notions 
and other criteria derived from them (Pessach & Schmueli, 
2022). Therefore, these four fairness criteria provide a prac-
tical approach for evaluating the performance of bias-miti-
gation algorithms in real-world applications. In practice, 
users can select the measure of fairness that is preferred 
based on context, knowledge of social disparities, use case, 
and regulations. We briefly describe each algorithmic fair-
ness notion in turn; the probabilistic definitions of these 
notions appear in the supplemental materials (Appendix A). 
It should be noted that the original definitions were estab-
lished using binary sensitive attributes (privileged versus 
unprivileged), which makes the absolute value of group 
probability differences a reasonable measure of the magni-
tude of unfairness. However, when examining fairness 
across multiple subgroups instead of just at the binary level, 
we retain the sign of the differences to determine which 
group had a lower probability than the other.

First, statistical parity is achieved by having equal favor-
able outcomes (degree attainment) received by the unprivi-
leged group (e.g., Black) and the privileged group (e.g., 
White). Said differently, under the notion of statistical parity, 
we consider a model fair if being a member of a racially 
minoritized group is not correlated with the probability of 
bachelor’s degree attainment.

The next three fairness measures build on the statistical 
notions of true/false positives/negatives (for a visual, see 
Confusion Matrix in Appendix B). Specifically,

•• A true positive result would correctly predict success 
for a student who succeeds (in our case, attains a 
bachelor’s degree).

•• A true negative result would correctly predict failure 
for a student who does not succeed.

•• A false positive result (Type I error) would incorrectly 
predict success for a student who does not succeed.

•• A false negative result (Type II error) would incor-
rectly predict failure for a student who does succeed.

Building on these statistical notions, equal opportunity 
represents equal false negative rates between groups. This 
fairness notion requires that each group receives the nega-
tive outcome at equal rates, conditional on their success. In 
other words, under this notion, the model should (incor-
rectly) predict failure for those who succeeded (attained at 
least a bachelor’s degree) at the same rate for students from 
different racial/ethnic groups. This notion assumes knowl-
edge of the true outcome values (whether a student attained 
at least a bachelor’s degree) and aims to satisfy parity 
between socially relevant groups, subject to the true values.

A third fairness notion is predictive equality, which repre-
sents equal false positive rates. To satisfy this criterion, 
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positive predictions (that a given student will attain a bache-
lor’s degree) for students who do not actually attain a bache-
lor’s degree should be the same across racial/ethnic groups.

Finally, the notion of equalized odds represents the average 
difference in false positive and true positive rates between 
groups. To achieve fairness under this notion, both the false 
positive rate (wrongly predicting success) and the true posi-
tive rate (correctly predicting success) should be the same 
across racial/ethnic groups. We measure fairness in college 
student success predictions using these four statistical notions.

Related Literature on Fairness in College Student 
Success Prediction

In recent years, educational researchers and data scien-
tists have begun to develop insights into algorithmic (un)
fairness and bias within various stages of the machine learn-
ing (ML) process. Generally, the goal of prediction models 
is to maximize the accuracy of the predictions, but research 
on algorithmic fairness examines not only the accuracy but 
also the fairness (or unfairness) of the prediction and the 
potential tradeoff between the two (Wang et al., 2021). 
Among the most important discernments from these studies 
are: (1) the importance of the representation of socially rel-
evant groups in training datasets (Riazy et al., 2020),1 and 
(2) novel statistical techniques intended to measure predic-
tive fairness between groups (Gardner et al., 2019; Hutt 
et al., 2019). 

A small but growing number of studies have examined 
algorithmic fairness in the domain of college student suc-
cess (Anderson et al., 2019; Hu & Rangwala, 2020; Hutt 
et al., 2019; Lee & Kizilcec, 2020; Yu, Lee, & Kizilcec, 
2021; Yu, Li, Fischer, 2020). Regardless of the data source 
or set of variables included, most of these studies have 
found higher false negative rates (predicted failure for stu-
dents who actually succeeded) for racially minoritized stu-
dents (Anderson et al., 2019; Lee & Kizilcec, 2020; Yu, 
Lee, & Kizilcec, 2021; Yu, Li, Fischer, 2020). Findings for 
other notions of fairness are more mixed (Lee & Kizilcec, 
2020; Yu et al., 2020).

Anderson et al. (2019), who used administrative data 
from a single institution, found higher false positive rates 
and lower false negative rates for White students and the 
reverse for Hispanic/Latinx students. Similarly, Yu et al. 
(2020) examined how predictions of college outcomes dif-
fered according to the data source used (e.g., learning man-
agement system [LMS], institutional data, or survey data). 
They found higher false negative rates for at least one group 
of racially minoritized students (Black, Hispanic, or interna-
tional students) across all data sources except click data 
(number of clicks in LMS; Yu et al., 2020). Likewise, using 
data from a large U.S. research university, Yu et al. (2021) 
detected disparities in predictions between “underrepre-
sented minority” (URM) students and the aggregate group of 

Asian and White students on three metrics: prediction accu-
racy; recall, defined as “the proportion of actual dropouts 
who are correctly identified”; and the true negative rate, 
defined as “how likely a student who persists . . . is predicted 
to persist” (p. 5).

Lee and Kizilcec (2020) also detected disparities in stu-
dent success predictions according to certain definitions of 
algorithmic fairness. In that paper, the authors evaluated pre-
dictive models for identifying at-risk students using three 
measures of statistical fairness: demographic parity, equality 
of opportunity, and positive predictive parity. They found 
that the models exhibit gender and racial bias in two of the 
three fairness measures considered.

Beyond exploring unfairness in ML models predicting 
college student success, our study tests various approaches 
for mitigating bias, both in data preparation (preprocessing) 
and in the models (in-processing). Previous work on bias 
mitigation within the domain of college student success pre-
diction has focused on the impact of including or excluding 
sensitive attributes (e.g., race/ethnicity) in prediction mod-
els. For example, Yu et al. (2021) found that racialized dis-
parities in college dropout predictions largely persisted 
regardless of whether the models contained sensitive attri-
butes, including whether the student was categorized as 
URM. Specifically, the accuracy of predictions was unal-
tered with the inclusion of sensitive attributes, and fairness 
was only modestly improved.

Similarly, while not the focus of their study, Bird et al. 
(2021) also found that including sensitive attributes in mod-
els did not influence model performance. That study evalu-
ated how accuracy was affected when sensitive attributes 
were excluded from the model, finding negligible changes 
(less than 1%). Notably, these findings are consistent with 
those from Yu et al. (2021), which were set in a significantly 
different context (Virginia community colleges versus a 
large research university).

To our knowledge, only one prior study has evaluated the 
effectiveness of statistical techniques to mitigate racialized 
bias in college student success predictions (Hu & Rangwala, 
2020). Specifically, Hu and Rangwala proposed a course-
based prediction model to predict whether students who 
have not taken a series of courses prior to a target course will 
fail that course. Their approach differed considerably from 
ours, given their study’s distinct aims. In particular, Hu and 
Rangwala used a metric-free approach for fairness consider-
ation and fitted separate models for each sensitive group to 
calculate the prediction gaps. The individual fairness metric 
was then added as a penalty to the sum of squared errors to 
estimate the parameters of neural network models subject to 
fairness. The results show improved fairness and accuracy 
compared to baseline methods.

Hu and Rangwala’s (2020) contribution differs from 
ours in three primary ways. First, that study used an indi-
vidual fairness notion rather than examining group fairness. 
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As mentioned previously, given our interest in systemic 
injustices based on racialization, group fairness measures are 
most appropriate for our study. Second, Hu and Rangwala’s 
paper employed a single ML model, neural networks, which 
is typically recommended for much larger datasets (Bengio, 
2012) and is less transparent for decision-making purposes 
(Molnar, 2020). Third, Hu and Rangwala used a binary sensi-
tive attribute, whereas we evaluated fairness across various 
racial/ethnic groups to examine how prediction outcomes 
and model performance differ between specific groups.

Our work extends previous studies in this area, particu-
larly the important contribution of Hu and Rangwala, by 
evaluating techniques to mitigate fairness at the group rather 
than individual level. Moreover, we use a rich, nationally 
representative dataset. In addition to enhancing the general-
izability of the findings, by using this public dataset, we 
allow for replication of this work and for comparability 
across studies to build a knowledge base about algorithmic 
fairness in college student success predictions. Furthermore, 
we bolster our empirical contribution by exploring various 
notions of fairness at the group level, presenting conceptual 
models that can be used for further exploration of unfairness 
in student success predictions.

Data Sources

Data come from the Education Longitudinal Study of 
2002 (ELS), a nationally representative, longitudinal study 
of students who were 10th graders in 2002. Given our focus 
on bachelor’s degree attainment, the dataset is filtered based 
on the institution type to only include students who attended 
four-year postsecondary institutions. The outcome variable 
captures students’ highest level of education as of the third 
follow-up interview (eight years after expected high school 
graduation). To construct a binary classification problem, we 
label students with a bachelor’s degree and higher as the 
favorable outcome (label = 1) and all others as the unfavor-
able outcome (label = 0).

Predictive variables include features commonly used for 
student success prediction, including student demographic 
characteristics, socioeconomic traits, grades, and college 
preparation (Anderson et al., 2019; Attewell et al., 2022; Hutt 
et al., 2019; Yu et al., 2021).2 We also include K12 school-
level contextual variables that could be predictive of college 
student success (school enrollment, geographic region, per-
cent of students on free or reduced-price lunch, and school 
control). Since category labels are not ordinal, we create 
binary variables for each level of the categorical variables fol-
lowing National Center for Education Statistics (NCES) (n.d.) 
documentation. The complete list of variables appears in the 
supplementary materials (Appendix C). Although our dataset 
does not include all possible variables that could be incorpo-
rated into a model that predicts college student success, our 
dataset has the advantage of being large (n = 15,244) and 

nationally representative and including the most commonly 
used features (27 predictors in total) based on our review of 
literature on college student success prediction.

Since we have a high number of missing values, we ran 
the models separately with multiple imputations (Rubin, 
1996) and without imputations (listwise deleted rows with 
missing data).3 To avoid the confounding impact of imputa-
tion on both unfairness and model performance, we strati-
fied the response variable (bachelor’s degree attainment) 
and racial groups for the training-testing splits, retaining the 
distribution of the historical data in both partitions. For sim-
plicity, we present results without imputation in our main 
results. The results with imputation appear in the supple-
mentary materials (Appendix D). A deeper investigation of 
how imputation affects the unfairness of the prediction out-
come appears elsewhere (Nezami et al., 2024).

First, we randomly split the dataset into training and test-
ing subsets with an 80:20 ratio (80% training, 20% testing). 
The ML models were trained on the training data and evalu-
ated on the testing data to demonstrate their generalizability. 
To evaluate the prediction outcome using various fairness 
notions (described previously), we stratified the training and 
testing datasets by the outcome variable class labels (1, 0) 
and racial/ethnic categories, ensuring that we have enough 
observations from each group. The results were averaged 
over 30 different splits of the data. Table 1 presents the dis-
tribution of the outcome variable by racial/ethnic category 
after dropping observations with missing values.

Analysis Methods

Evaluating Unfairness

We employed four widely used ML models in higher edu-
cation, including Decision Tree (Hamoud et al., 2018), Random 
Forest (Pelaez, 2018), Logistic Regression (Thompson et al., 
2018), and SVM (Agaoglu, 2016). Each ML model has pre-
defined parameters known as hyperparameters that must be 
provided before the training phase (e.g., depth of the tree in 
Decision Trees). Since the optimal values of such hyperparam-
eters are data-dependent, we performed a five-fold cross- 
validation (CV) for each model to determine the best set of 
hyperparameters. In this process, the dataset was divided into 
five partitions, four of which were utilized for training and 
one for validation. Cross-validation repeats this process and 
selects a different partition for validation each time. A grid of 
feasible hyperparameters was assessed based on the CV 
schema described previously to choose the optimum set. 
Under 30 distinct random splits of training and testing datas-
ets, we obtained the best set of hyperparameters before we 
performed model training. To evaluate model performance, 
we report the average and variance of the accuracy, as well as 
unfairness toward different racial/ethnic groups using various 
notions of unfairness.
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Mitigating Bias

In addition to evaluating unfairness in algorithms, we 
implemented statistical techniques to mitigate bias. Such 
techniques can be categorized into three groups: preprocess-
ing, in-processing, and post-processing approaches (Pessach 
& Schmueli, 2022). Preprocessing techniques involve fair-
ness evaluation in the data preparation step, which in turn 
should mitigate bias for downstream tasks. In contrast, in-
processing techniques generally involve modifying the ML 
algorithms to account for fairness during the training pro-
cess, such that the parameter estimation of the classifier 
forces the prediction outcome to be fair toward all (racial/
ethnic) groups. The enforcement is accomplished in the opti-
mization subproblem by adding a fairness metric as a 
constraint.

In this study, we employed two preprocessing and two 
in-processing mitigation techniques. We opted to exclude 
post-processing techniques for mitigating bias since these 
mechanisms are implemented at a later phase in the learning 
process, often producing inferior results (Woodworth et al., 
2017). Post-processing bias-mitigation strategies also tend 
to be more controversial in practice, since they involve 
changing the prediction outcome after the model has been 
trained and are thus less likely to be used in education set-
tings (Hirschman & Bosk, 2020).

From the array of bias-mitigation techniques, we selected 
reweighting, disparate impact remover, exponentiated gradi-
ent reduction, and meta-fair classifier based on their wide-
spread application and potential to address distinct sources 
of bias in predictive modeling (Ferrara, 2023; Hort et al., 
2023). By employing these techniques collectively, we 
sought to comprehensively address various sources of bias 
in our predictive modeling analysis.

We applied two preprocessing techniques: reweighting 
(Kamiran & Calders, 2012) and disparate impact remover 

(DIR) (Feldman et al., 2015). Reweighting assigns different 
weights to the training samples in each combination of 
racial/ethnic group and outcome-variable class label (e.g., 
Black X outcome label = 1). It does so before training a 
model to adjust the bias across groups. Because individual 
observations from the unprivileged groups with positive out-
comes are underrepresented in the training data (see Table 
1), classifiers are susceptible to bias. In this preprocessing 
approach, the data points representing successful outcomes 
for unprivileged groups are identified and upweighted to 
have a larger influence on model training.

In contrast to reweighting, DIR changes the distributions 
of other features in the model (not race/ethnicity) to force dis-
tributions to overlap at the group level. This process removes 
the ability to distinguish between group membership from a 
feature that otherwise offers a good indication to which group 
a data point may belong. As such, DIR directly targets dispa-
rate impact, where certain groups receive favorable outcomes 
more often than others, by adjusting feature values.

In addition to the two preprocessing techniques, we used 
two in-processing bias-mitigation strategies. The first in-
processing technique is exponentiated gradient reduction 
(ExGR), which is designed to minimize the impact of sensi-
tive features on the model’s predictions (Agarwal et al., 
2018). It does so by iteratively reweighting the training 
examples to decrease the model’s sensitivity to sensitive 
attributes, such as race/ethnicity.

The second in-processing technique, meta fair classifier 
(Celis et al., 2018), takes a large class of fairness metrics as 
inputs and returns an optimal classifier that is fair with 
respect to constraints on the given set of metrics. This tech-
nique involves training a secondary model to adjust the pre-
dictions of the primary model based on sensitive attributes. 
It essentially acts as a corrective mechanism by learning to 
counteract the biases present in the primary model’s predic-
tions. By explicitly considering fairness metrics, metaclassi-
fiers offer a fine-tuned adjustment to the base model’s 
predictions, adapting to various types of bias. An advantage 
of this approach is that it works for various fairness criteria 
rather than a single fairness metric (e.g., Zafar et al., 2017).

In the results section, we refer to reweighting as ReW, 
disparate impact remover as DIR, exponentiated gradient 
reduction as ExGR, and metaclassifier as MetaC. For com-
parison, we also consider the baseline classification sce-
nario, where no mitigation strategy is used.

Comparisons

We used two comparison approaches to appraise model 
unfairness and test mitigation techniques—namely, (1) the 
subgroup level (i.e., each racial/ethnic group versus the rest) 
and (2) the aggregate level (i.e., privileged versus unprivi-
leged). First, we compared each racial/ethnic group against all 
others and considered 1 for a certain group (e.g., Black) and 0 

TABLE 1
Distribution of Bachelor’s Degree or Higher Variable by Racial/
Ethnic Category

Race
Bachelor’s or 

Higher % of data

Asian, Hawaiian/Pacific Islander 1 0.72800
 0 0.27200
Black or African American 1 0.55851
 0 0.44149
Hispanic 1 0.63339
 0 0.36660
More than one race 1 0.63265
 0 0.36735
White 1 0.71768
 0 0.28232
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for every other group (e.g., White, Asian, Hispanic, and two 
or more races) to calculate gaps as discussed previously.

To evaluate the limitations of data aggregation, which is 
common in this type of work, we also aggregated White and 
Asian groups in the privileged category and Black, Hispanic, 
and two or more race (2+) groups in the unprivileged cate-
gory. While we recognize that Asian racialization is distinct 
and encompasses a diverse group of students, given the 
higher rates of educational attainment among this group in 
the aggregate, in this study, we consider this group statisti-
cally “advantaged” within educational contexts.

These comparisons represent an extension over prior 
work as they allow us to investigate the impact of existing 
mitigation techniques at both the subgroup and aggregate 
levels. Most existing techniques only work with binary sen-
sitive attributes (e.g., “White” and “non-White”), requiring 
the researcher to specify the privileged group and forcing 
other subgroups to be aggregated as the unprivileged group 
(Pessach & Schmueli, 2022).

Although some existing unfairness mitigation tech-
niques have the potential to incorporate nonbinary sensi-
tive attributes, such extension has not been implemented in 
the literature. Binarizing sensitive attributes (1: privileged, 
0: unprivileged) for the mitigation processes may not reduce 

fairness gaps for each group. This is important in educa-
tional settings, where research shows that students from 
different racial/ethnic groups have distinct experiences and 
outcomes (e.g., López et al., 2018). Therefore, it is critical 
to evaluate unfairness after applying mitigation techniques 
at the subgroup levels, as there may be significant differ-
ences between unprivileged subgroups.

Results

We find no significant differences between the perfor-
mance (accuracy) of different ML classifiers, although there 
are differences in unfairness levels between fairness notions 
and models (see Appendix E). To facilitate comparison, 
Figure 1 presents results for all ML models. We discuss the 
main findings for our assessments of unfairness and the 
effectiveness of bias-mitigation techniques in turn.

Evaluating Unfairness

Subgroup Level: Each Group Versus the Rest. Figure 1 
shows a comparison of unfairness levels using all four fair-
ness notions and ML models for the baseline (without bias 
mitigation). The testing accuracy across these models is 

FIGURE 1. Baseline with all ML models for all racial/ethnic groups. (a) Statistical parity of baseline for different ML models, (b) equal 
opportunity of baseline for different ML models, (c) predictive equality of baseline for different ML models, and (d) equalized odds of 
baseline for different ML models.
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77%, with a variance of 1.72% and an F1-score4 of 75%, on 
average (Appendix E). These results indicate that models are 
generally biased against Black and Hispanic groups. Under 
the fairness notions of statistical parity (Figure 1a), predic-
tive equality (Figure 1c), and equalized odds (Figure 1d), the 
boxes for Black and Hispanic students are at a lower level 
across all ML models, indicating that these students receive 
favorable outcomes (i.e., bachelor’s attainment or higher) at 
a lower rate than students in other categories. For the notion 
of equal opportunity (Figure 1b), higher levels in the box 
plots, which we observe for Black and Hispanic groups, rep-
resent more unfairness. Specifically, these higher levels 
indicate that the prediction models are more likely to predict 
failure for Black and Hispanic students who succeeded.

The confusion matrices in Figure 2a present concrete 
examples of model accuracy. With respect to statistical par-
ity, students in the Asian and White categories have, respec-
tively, 89% and 84% probability of attainment, while those 
in the Black and Hispanic categories have 60% and 61% 
probabilities. Without correcting for bias, predictive models 
will be more likely to predict that students categorized as 
Black and Hispanic are less likely to attain a bachelor’s 
degree or higher than their more privileged peers.

The findings for predictive equality illustrate bias in the 
accuracy of the predictions. Among the students who did not 
complete their degree (y = 0), the probability of completing 
their degree (predicted success, despite actual failure) is esti-
mated as 65% for White and 73% for Asian, while it is esti-
mated as 28% for Hispanic and 33% for Black (Figure 2a). 
As illustrated in Figure 1b, the models are also more likely 

to falsely predict failure for Black and Hispanic students 
than for White and Asian students. Illustratively, among the 
students who completed their degree (y = 1), the probability 
of failure is estimated as 12% for White and 6% for Asian 
students, while it is estimated as 21% for Hispanic and 19% 
for Black students, as illustrated in Figure 2a.

Moreover, the boxplots show that the variation of values 
for the White and Asian groups is minimal, especially for the 
White group, whereas the variation of unfairness gaps for 
the other groups is significantly larger. Differences in varia-
tion between racial/ethnic groups indicate that models for 
minoritized groups are more sensitive to train/test splits. 
Due to the population bias across different racial/ethnic 
groups in the ELS dataset (i.e., statistical underrepresenta-
tion of Black and Hispanic students), the train/test splits can 
significantly change the distribution and presence of under-
represented individuals in each partition, significantly 
impacting the unfairness of the model for each split scenario. 
In practice, this will result in less stable and fair model per-
formance for predicting the success of an unobserved indi-
vidual from a statistically underrepresented group.

Aggregate Level: Privileged vs. Unprivileged. Figure 3 pres-
ents the box plots for all four unfairness notions at the aggre-
gated level of privileged (Asian and White) versus unprivileged 
(Black, Hispanic, and two or more racial/ethnic categories) 
for all prediction models. The first evident pattern from all 
four plots is the mean difference between the two groups 
across all four fairness notions. Similar to results at the sub-
group level, we observe worse model performance (accuracy) 

FIGURE 2. Confusion matrices for all racial/ethnic groups. (a) RF confusion matrices of baseline, (b) RF confusion matrices of ExGR, 
and (c) RF confusion matrices of MetaC.
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for the unprivileged group. This accuracy disparity manifests 
as higher false negative rates for the unprivileged group and 
lower false positive rates for the unprivileged group.

Comparing findings at the subgroup and aggregate levels, 
we observe that aggregate results mask substantial differ-
ences we can glean from the subgroup analysis. For instance, 
in Figure 1a, all the models demonstrate greater unfairness 
toward the Black group rather than the Hispanic group, espe-
cially in the case of SVM and LR. At the aggregate level of 
analysis, however, this variation cannot be observed (all 
models are unfair toward the unprivileged group). Next, we 
turn to the results for bias-mitigation techniques.

Mitigating Bias

Given space constraints and for ease of interpretability, we 
present mitigation results using one predictive model, RF, 
which is a nonlinear classifier commonly used in the educa-
tion literature. These results appear in Figure 4 (findings from 
other ML models are in Appendix F). Our first observation is 
that the preprocessing and in-processing mitigation methods 
only minimally decrease accuracy (by 1% to 2%). One tech-
nique, MetaC, significantly improves accuracy (by 10 to 17 
points over the baseline model without bias mitigation).

The bias-mitigation techniques we used required us to 
specify the privileged and unprivileged groups and to treat 
the sensitive attribute as binary. The results indicate that cer-
tain techniques demonstrate greater effectiveness than oth-
ers, particularly when paired with specific ML models or 
fairness measures. We first present findings for the prepro-
cessing mitigation techniques, ReW and DIR.

The results (in Figure 4) indicate that the ReW technique 
is minimally effective in mitigating bias compared to the 
baseline case. If the goal of the education data analyst is to 
reduce unfairness in student success predictions, increasing 
the influence of data points that represent successful stu-
dents from unprivileged groups (e.g., Black students who 
succeed) in the training process is not enough. This finding 
suggests that the underrepresentation of successful students 
from unprivileged groups in the training data is not a key 
source of bias in student success predictions.

Upon further analysis (in Appendix F), it is evident that 
ReW performs better with linear ML models like SVM or 
LR compared to nonlinear models such as RF or DT. This is 
likely because ReW, where different weights are assigned to 
observations, adjusts the data distribution, enhancing linear 
separability and allowing linear models to leverage the 
refined data distribution effectively.

FIGURE 3. Baseline with all ML models for privileged vs. unprivileged groups. (a) Statistical parity of baseline for different ML 
models, (b) equal opportunity of baseline for different ML mod, (c) predictive equality of baseline for different ML models, and (d) 
equalized odds of baseline for different ML models.
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The second preprocessing mitigation technique we 
employed, DIR, effectively reduces model unfairness for all 
the unprivileged groups, demonstrating notable effectiveness 
for the Black group. This approach modifies the distributions 
of other features in the model (e.g., students’ native language 
and family composition) to reduce their correlation with 
racial/ethnic categorizations. A feature can provide a strong 
indication of the group to which a data point might belong. 
DIR aims to eliminate this capacity to distinguish between 
group membership. In addition to reducing unfairness for the 
Black group, DIR diminishes the modeling bias in favor of 
the White group relative to other groups. However, the bias in 
favor of the Asian group is only partially diminished, and it 
does not substantially improve fairness across all fairness 
notions for this specific subgroup. In line with expectations, 
applying DIR decreases the equal opportunity gap between 
the White group and all other groups, indicating a decrease in 
the number of successful students from unprivileged groups 
who are falsely predicted to be unsuccessful.

Note that the DIR approach corrects the dataset measuring 
and considering the statistical parity notion at the aggregate 
level. Hence, it is expected to observe equal proportions of 
positive prediction from each group at the aggregated level of 
privileged versus unprivileged. However, our results show 

that DIR does not fully achieve statistical parity for each sub-
group using ELS data. At the aggregate level (Figure 5), DIR 
slightly removes the modeling bias in favor of the privileged 
group and reduces the bias against the unprivileged group, 
although not as effectively as other mitigation techniques. 
Findings for DIR at the subgroup level (Figure 4) also high-
light differences between two groups that are often consid-
ered privileged (Asian and White) and two groups that are 
often considered unprivileged (Black and Hispanic), under-
scoring the importance of disaggregation.

Contrary to ReW findings, results in Appendix F demon-
strate that DIR performs better with nonlinear models like RF 
or DT rather than linear models. This outcome may stem from 
the adjustments made by DIR, which aim to reduce disparate 
impact but may lead to a dataset requiring complex decision 
boundaries for effective class separation. Nonlinear models 
are better at dealing with complexities because they can more 
effectively capture intricate relationships in the data.

Turning to the in-processing techniques, ExGR emerges 
as the most effective technique in reducing bias. Although it 
does not fully eliminate disparities, it significantly mitigates 
the model bias in favor of the White group and reduces the 
bias against the Black and Hispanic groups across all four 
fairness notions. This is likely because the ExGR, as an 

FIGURE 4. Mitigation for all racial/ethnic groups. (a) Statistical parity of RF using bias mitigation techniques, (b) equal opportunity 
of RF using bias mitigation techniques, (c) predictive equality of RF using bias mitigation techniques, and (d) equalized odds of RF using 
bias-mitigation techniques.
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in-processing method, integrates fairness constraints directly 
into the training process, using a specific fairness metric as a 
constraint incorporated into the optimization objective func-
tion during the execution of ExGR.

The MetaC technique effectively mitigates biases for 
both the Hispanic and Black groups concerning equal oppor-
tunity, predictive equality, and equalized odds, the fairness 
notions related to prediction accuracy. However, MetaC 
does not enhance fairness in the case of statistical parity. 
Moreover, MetaC leads to increased variability for predic-
tive equality and equalized odds, suggesting that the adjusted 
model is less robust to variations in data splits.

Results at the subgroup level can be further explored by 
examining the confusion matrices in Figure 2 (findings from 
other techniques are in Appendix G). These results were 
computed by aggregating across 30 different splits for each 
race and mitigation technique combination. Notably, ExGR 
demonstrates superior performance with Hispanic students 
compared to Black students. Particularly, it shows a greater 
reduction compared to the baseline in the number of suc-
cessful Hispanic students falsely predicted to be unsuccess-
ful. MetaC, in alignment with its higher accuracy, enhances 
the number of correctly predicted students for both the Black 
and Hispanic groups. Additionally, it is noteworthy that it 
significantly decreases the number of unsuccessful White 

students falsely predicted to be successful, reducing dispari-
ties in predictions between White students and other groups.

The results confirm that even at the aggregated level, 
unfairness is only partially mitigated, with ExGR emerging 
as the most effective technique. The results suggest that in-
processing techniques, while not achieving perfect perfor-
mance, are more effective in reducing bias compared to 
preprocessing techniques. Future work should examine bias 
mitigation when both preprocessing and in-processing tech-
niques are applied simultaneously.

Discussion

This study sought to examine how college student suc-
cess predictions, including the accuracy of predictions, dif-
fer across racial/ethnic groups. We also evaluated the 
effectiveness of four common bias-mitigation techniques. 
Using a nationally representative dataset with student-level 
data, we demonstrate how prediction models yield less accu-
rate results for Black and Hispanic students, systematically 
making more errors in predictions for these students. These 
models are significantly more likely to predict failure for 
Black and Hispanic students who actually succeeded and 
less likely to predict success for students who failed com-
pared to White and Asian groups.

FIGURE 5. Mitigation for privileged vs. unprivileged groups. (a) statistical parity of RF using bias mitigation techniques, (b) equal 
opportunity of RF using bias mitigation techniques, (c) predictive equality of RF using bias mitigation techniques, and (d) equalized odds 
of RF using bias-mitigation techniques.
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In addition, we illustrate both the potential and the limita-
tions of existing techniques in mitigating bias. Bias-
mitigation techniques generally show promise in improving 
fairness, but all fail to fully eliminate disparities in the pre-
dictions across racial/ethnic groups. In-processing tech-
niques, those that account for fairness in the modeling 
process, are generally more effective at mitigating algorith-
mic bias across different ML models compared to prepro-
cessing techniques, which adjust the data before modeling.

The practical implications of these findings are signifi-
cant but depend on the use of prediction outcomes. For 
example, if such models are used to make college admis-
sions decisions, admission may be denied to racially minori-
tized students if the models show that previous students with 
the same racial categorization have lower predicted likeli-
hoods of success. Considering mounting evidence of algo-
rithmic bias, this potential consequence has led researchers 
to caution that such models should not be used for admission 
decisions (Hutt et al., 2019).

Likewise, with course recommendations, higher educa-
tion observers have warned that predictions could lead to 
educational tracking, encouraging students from racially 
minoritized groups to pursue courses or majors that are per-
ceived as less challenging (Ekowo & Palmer, 2017). Such 
consequences may go undetected since automated sorting 
mechanisms remain both obfuscated (due to their invisibility 
to educational stakeholders) and legitimized through percep-
tions that statistical models are objective (Hirschman & 
Bosk, 2020).

In contrast to the previous scenarios, biased models may 
lead to greater support for disadvantaged students when used 
to inform student success interventions. By falsely predict-
ing failure for racially minoritized students who succeed, the 
model may direct greater resources to those students the 
model is biased against. Even then, practitioners must be 
careful not to produce deficit narratives of minoritized stu-
dents, treating them as though they have a lower probability 
of success.

The evidence of algorithmic bias, coupled with varying 
implications depending on the use of predictions, signals 
the importance of training end users on the potential for 
algorithmic bias. End users comprise a wide array of col-
lege and university staff members, including admissions 
officials, academic advisors, and faculty members (Algarni 
& Sheldon, 2023; Chen et al., 2020; Denley, 2013; Klempin 
et al., 2018; Tough, 2021). Awareness of potential algorith-
mic bias, including its direction and the groups targeted by 
the bias, can help users contextualize predictions for indi-
vidual students and make more informed decisions.

Beyond training end users, the findings from this study 
point to the potential value of employing statistical tech-
niques to mitigate algorithmic bias and leveling model 

performance across groups. While the techniques we 
employed failed to eliminate disparities in prediction out-
comes or accuracy, some techniques effectively reduced bias 
in the models, particularly those that incorporate fairness 
constraints in the modeling process. Analysts building pre-
dictive models, either within institutions or for third-party 
vendors, should explore the use of bias-mitigation tech-
niques, particularly given growing concerns over algorithmic 
bias (Barocas & Selbst, 2016; Ekowo & Palmer, 2017; 
Kizilcec & Lee, 2022).

As higher education institutions strive to better serve stu-
dents by becoming more data-informed (Gagliardi & Turk, 
2017), it is imperative that predictive models are designed 
with attention to their potential social consequences. It is 
critical to be aware of historical discrimination reflected in 
the data and consider fairness measures to reduce bias in the 
outcomes of the models. This paper demonstrates that more 
work is needed to reduce algorithmic bias across racialized 
groups. Future research should examine the effectiveness of 
other bias-mitigation techniques. Another important avenue 
for future work is understanding how feature selection 
(which variables to include in the model) affects prediction 
accuracy and fairness across racialized groups. Such work 
could expand on existing and conflicting recommendations 
concerning the inclusion of race/ethnicity variables in stu-
dent success prediction models (Baker et al., 2023; Hu & 
Rangwala, 2020; Yu et al., 2021). Finally, while we demon-
strate the importance of disaggregating beyond privileged/
unprivileged, the ELS racial/ethnic categories are severely 
limited. Future work should disaggregate further to lead us 
toward more racially just student-success practices in higher 
education.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with 
respect to the research, authorship, and/or publication of this 
article.

Funding

The author(s) disclosed receipt of the following financial support 
for the research, authorship, and/or publication of this article: The 
research reported here was supported, in whole or in part, by the 
Institute of Education Sciences, U.S. Department of Education, 
through grant R305D220055 to the University of Illinois Chicago 
and by grant P2CHD042849, awarded to the Population Research 
Center at The University of Texas at Austin by the Eunice Kennedy 
Shriver National Institute of Child Health and Human Development. 
The content is solely the responsibility of the authors.

ORCID iDs

Denisa Gándara  https://orcid.org/0000-0001-5714-5583

Hadis Anahideh  https://orcid.org/0000-0003-1935-7571

https://orcid.org/0000-0001-5714-5583
https://orcid.org/0000-0003-1935-7571


Inside the Black Box

13

Notes

1. In ML, a training dataset includes the data you use to train the 
model or algorithm to predict the outcome of interest.

2. An examination of the impact of including specific features 
in predictive models is beyond the scope of this study. Such work, 
under progress, includes the review of a rich literature and dis-
cussion of other important considerations, including social and 
political contexts. Such background and analysis cannot receive 
adequate treatment in conjunction with the analyses presented in 
this study.

3. In all versions, we avoid imputing socially relevant (sensitive) 
attributes and outcome variables. Hence, observations with missing 
values for these variables are always dropped before imputation.

4. The F1-score is employed to compute metrics for individual 
labels and obtain their weighted average based on support, which 
accounts for label imbalance by considering the number of true 
instances for each label.
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