Electro-Magnetism (2)

Thm 2.1
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B(r,t)=VxA(r,t) .. (2.1.6)
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Thm 2.2

The A(r,t), (r,t) given in (2.1.3), (2.1.4) can be proven to satisfy the following three
equation:

v2¢(r,t)—c—1262g2’t) :-p(gr’t) 2.2.1)
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1 °A(r,t)

VZA(r,t) - = -uJr,ty 222
(r,t) e HoI(r 1) (2.2.2)
V-A(r,t)+i2w=0 ....... (2.2.3)
o ot
Thm 2.3

From (2.2.1), (2.2.2), (2.2.3), we can derive the Maxwell equation in vaccum

v.Ery=2tY 2.3.1)
VxE(rt) = — aBé:’ v (2.3.2)
V.Brt)=0 (2.3.3)
VxB(r,t) = 1,J(r,t) + &, OEg[‘,t) ........ (2.3.4)
Def 2.4
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q
r

The dipole moment of the dipole as shown in the figure is given by
p=qr ....(24.0)

The polarization P at point r is given by

P(r.t) = P,
AXAYAZ ;. 2P,
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The magnetic dipole moment of the magnetic dipole given in the figure is given by
m—1|§(r—r)xdr (2.4.3)

= yxdar 4.

The magnetization M of point r is given by

1
M(r,t) = m.
r.t) AXAYAZ ;. 2m
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y<y; (H<y+ay
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Thm 2.5

Let the space is filled with medium, then the space will be filled with electric and
magnetic dipole. The divergence of P will give a effect of charge, named bound charge,
which is given by

p=-V-P (2.5.1)

The curl of M will give an effect of current, named bound current, which is given by

J,=VxM . (2.5.2)

Also, the derivative of P w.r.t. time will give an effect of current, named polarization
current, which is given by

_oP

J =—
oot

.. The Maxwell equation should be modified to
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V.E:g_(pf+pb):8—(pf—V-P) ...... (2.5.4)
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vxe=-8 (2.5.5)

ot
V-B=0 . (2.5.6)

VXB:/uo(Jf +‘]b+Jp)+luogoiEE

op e (2.5.7)
=u(J. +VxM+—)+ue, —
:uo( f 8t) luo (o] at

Define
D=¢E+P . (2.5.8)
H :iB—M ....... (2.5.9)

Hy
Then eqt (2.5.4) to (2.5.7) can be rewritten as
V-D=p, . (2.5.10)
vxE=-%8 (2.5.11)

ot
v.-B=0 . (2.5.12)
VxH=1J, +@ ....... (2.5.13)
ot

Thm 2.6

In linear medium, there exist a constant y, (electric susceptibility) and y, (magnetic
susceptibility), which its value depends on what the medium is and such that

P=¢,7.E
...... (2.6.1) and (2.6.2)

M=y H

From this two equation, we can derive that there exist two constant ¢ (permittivity of the
medium) and u (permeability of the medium) such that

D= . (2.6.3)
H= 1 B . (2.6.4)
U



Thm 2.7

Let U1, Uz are the solution to V: VV = -4z inQ. Let U1=U, on 6Q (Dirrichlet cond’t)
or VU,-n=VU, -nonoQ (Neumann cond’t).

=U,-U, =constin Q
Proof: Refer to AEM handwritten notes Thm 3.
Thm 2.8

Let Qbe a closed volume in space. Let V’® =4z in Q and ® = ®, on 6Q (Dirrchelet

+F(r,,r), where r, e Q.G(r,,r) |,..0=0,

cond’t). Let G(r,,r) = |
0

V?F(r,,r)=0forreQ.

= (1)) = [ G(r,,)p(r)d°r —i§ ®,(r)VG(r,,r)-da(a is pointing away from Q)
o 4 7 Jo0

for vi,e®@ (2.8.1)

Proof: Refer to AEM handwritten notes Thm 4.

Thm 2.9

Let Qbe a closed volume in space. Let V?® =—4zo in Qand V@ -n =g (n is pointing

away from Q) on 0Q2. Let G(ro,r)=%+ F(r,,r), where r,e Q,
0

VG(rO,r).n|rem:—4—ﬂ, V?F(r,,r)=0forreQ
Area(oQ)
oy b 1
= ®(r,) = [ G(r,,1)p(r)d°r + y [ G(r,n)g(r)da~+ Aol [ ®(r)da
...... (2.9.1)

Proof: Refer to AEM handwritten notes Thm 4.
Lemma 2.10

In order to make Thm 2.9 useful, use a Q such that Area(oQ2) — +.



Thm2.11

Let S be a sphere of radius R, centered at the origin. Let s>R, then

R
L s .s=0 (2.11.1)
rse ] |r_Rie|rEas_ cen(2.11.
S r
Thm 2.12
Z

[

Let Q be a cylinder in space, such that its axis is parallel to z-axis and its cross-section
shape can be arbitary. Let electric charge distribution p inside Q is independent of z, i.e.

p = p(x,y). From electrostatic, we have the law V’® =47 in Q. Suppose
® =0, 0n0Q, where @, =d,(X,Y), then we can assume ® =®d(x,y). Let
G(ry, 1) =In|r, —r|+F(r,r), where r, =xe, +ye, r=xe, +y,,rn,eQ
G(rp, M lrcco=0,

V?F(r,,r)=0forreQ

= O(r) = IQG(ro, N p(r)yd’r —i §mc1>l(r)ve(ro, r)-dl, for Vr,eQ

where |, is pointing away from Q.

Thm 2.13

Let C be a circle of radius R on a plane, centered at the origin. Let s>R, then



RZ
In|r—sep|—ln|r—?e

o ||reac=2a constant,

where re, lies on the aforementioned plane.

Axiom 2.13a

We are living in a four dimensional continuum, such that every point in this continuum
can be described by four co-ordinates: (X,, X;, X,, X3 )

Axiom 2.14

Let Tﬂ";jjj be a tensor in the coordinate system (X, X, X,, X3 ). LetT,gj‘jjj be the same tensor in
the coordinate system (Xg, X;, X;, X;), then T2, T, "are related by

By

s =2X—;’%2X—,7~T,§”;L ....... (2.14.1)
Xy OK, OX;

Axiom 2.15

In every point of our four dimensional continuum, we can define the covariant metric
tensor g, . Then the contravariant metric tensor is found by

0,97=6, ... (2.15.1)

Then for any tensor at that point, we have

T8 0w=Tm. (2.15.2)
and

Toogr =T/ (2.15.3)
Thm 2.16

Let Q be a region in our four dimensional continuum which is enough small. Then we
can always perform coordinate transformation ( X,, X, X,, X; ) t0 (X, X;, X5, X3 ), such that in

the region of Q in this new coordinate system, X; =Ct, X, =X, X, =Y, X; = Z and that the
covariant metric tensor is given by



9.= . | . (2.16.1)

Thm 2.17

In the region Q in the new coordinate system described in the last theorem, we can talk
about all the electromagnetism we mentioned before. We propose that from many of the
physical quantities in electromagnetism, we can construct tensors:

Current density four vector:
J“=(pJ,,3,3,) (2.17.1)

Four vector potential

1
A“=(Ego,AK,Ay,AZ) ........ (2.17.2)
Field tensor
0 ~E, =E, 1EZ
c c c
-~E, 0 B, -B,
Fe = f eeenl(2.17.3)
--E, -B, 0 B,
c
—l . B, -B 0
L C i

Recall in Thm 2.1 that the position of a particle is described as



ri(t) =x (e, +V, (t)ey +z(e, (2.17.4)

Define the Four velocity of this particle

v=0r x.Ly0), L) 0 ... (2.17.5)
C C C

where y = [1— | ri((:tz) [ J ........ (2.17.6)

Def 2.18

A path in the four dimensional continuum can be described as

X, =X4 L (2.18.1)

for 0=0,1,2,3. Suppose along this path, we can define a tensor A7 (1), then the
covariant derivative of this tensor at a point on the path is given by
DA; . dAL"  OALT

Y miniar 7 (2.18.2)

where 6A; " can be generated using the formula:

" = —FO‘;q"dxp
A, = +F;pq|,dx" ...... (2.18.3a, b and ¢)
5(A;9,0"97)=0

where dx” = (x,(4+d4) —x,(4)) ceennn(2.18.4)

Def 2.19

Let A;‘;j, be a tensor which is defined in every point in the four dimensional continuum,
then we write

.. DA

L=—= 2.19.1
= o (2.19.1)

where we have assume a path given by



A foro=r1

X, (1) ={ ........ (2.19.2)

X, foro=rt

Thm 2.20

The tensors defined in Thm 2.17 have the following relations to each other

FOO=A A . (2.20.1)
B =g dt (2.20.2)
i
m Gy e (2.20.3)
Ds c "

In the covariant derivatives of v*w.r.t. s in (2.20.3), we have assumed v*is defined along
the world line of the particle concerned, where the world line of the particle is given by

X, =x() L. (2.20.4)

such that for any s, we have

S dx,(8) dx(s) _
20, e Tt (2.20.5)

wu,v=0

(For the details about covariant differentiation, refer to “General Relativity”, by 1. R.
Kenyon)

Thm 2.21

Suppose we are in Q and the new coordinate system described in Thm 2.16. Suppose now
in Q, there are many particles, such that their positions are described by

rw= >rte, 2.21.1)

a=x,y,z

Define the energy-momentum tensor of these particles:

T(r,t)=

cy.mr (t fore=123 ... 2.21.2
vz, D cymi,(t) ( )

x.grix(t)<x+Ax
y<ry (t)<y+Ay
7<r;, (t)<z+Az



T®(r,t)= Az, Syme? (2.21.3)

X<y (1) <X+AX
y<ry (t)<y+4ay
z<r, (t)<z+Az

T(r,t)=

AXAYAZ ;.
X<y (t)<X+AX
y<ty (t)<y+Aay
z<r, (t)<z+Az

m.cr. . (t forp=123 ... 2.21.5
AXAyAZi: Zyl i |ﬂ() ﬁ ( )

X<y (1) <X+AX
y<riy ()<y+Ay
z<r;, (t)<z+Az

T%(r,t)=

-2
where y, :(1— O] ] ....... (2.21.6)
C

Define the energy-momentum tensor for the electromagnetic field

T :i[_FayF/W_F%g“/’FﬁFV‘S] ....... (2.21.7)

0

Then we have
Te+T8.,=0 L (2.21.8)

Thm 2.22

Suppose we are in Q and the new coordinate system described in Thm 2.16,

-y e L (2.22.1)
2 2u
-t e, 0 . (2.22.2)
,C
T2 -1 (Ex B, . (2.22.3)
HoC
-t Exm), (2.22.4)
C

(o]

Def 2.23

D ymi, @1,  fora, =123 (221.4)



Suppose at a point the E field w.r.t. time can be given by E =E(t), then the component
of this E field with frequency below o is given by

Fl(o)e 'd0’ . (2.23.1)

1 o
E =—

C Jox L’
where F(')is given by
F(w) = 1 | "E(t)e"dt (2.23.2)

T EWETdt 23.

Thm 2.24

It can be proved from (2.5.10) to (2.5.13) the boundary condition between two medium

n
1
2
n-(D,-D;)=0, o (22410)
n-(8-8)=0 (2.24.1b)
nx(g-g)=0 (2.24.1¢)
nx(H-H)=w, (2.24.1d)

Thm 2.25

Suppose we are in Q and the new coordinate system described in Thm 2.16. Suppose now

we change our coordinate in Q from (Ct,x,y,z) to (ct',x,y',7) given by



o U

t' =t = x (2.25.1)
y'=y

7'=z

Write (ct, X, Y, Z) = (Xy, X, X5, X3), (Ct', X', Y, 27) = (X5, X, X3, X3) . Then the above
transformation can also be written as

Xo = 7% — %]

x=r-Mo+x (2.25.2)
Xo =X,

X3 = Xg

From (2.14.1), we know that our field tensor defined in Thm 2.17 is transformed as

E'#v =%% =
OX,, OX,

....... (2.25.3)

Substitue the definition of the field tensor in Thm 2.17, together with (2.25.2), from
(2.25.3), we can prove:

E/ =E,
E, = y(E, ~uB,)
E, = y(E, +UB,)

B.=B, . (2.25.4a to f)
, u
B = 7(B, t E,)
u

B; :}/(Bz _?Ey)



It can be proved for the following two special cases:

a.) B=0 in S (orginal frame)

’ 1 ’
=B=-SUxE) (2.25.52)
b) E=0 inS
—E=uxB .. (2.25.5b)
Thm 2.32

Consider a circular ring such that there are +ve charges evenly distribute on it. Since it is
a rigid body, we set up e1, €z, 3 as shown in the figure. (Meaning of ey, ez, esrefer to Def
1.2.) Define it external Kinetic energy

1 1
(K E')ext = (K E')translatimal + E |116012 + E I226022 '''''' (232 1)
and external kinetic energy
1. 5
(KE), = 5 | 5505 ceenn(2.32.2)
Since the circular ring has a o, rotation, it produces a magnetic moment p = ze,. If we

assume that w; is very big such that (K.E.)int >> (K.E.)extat any time, then we can assume
(K.E.)int to be approximately the same at any time and g in pkeep constant.



Suppose now there is an external B field. The ring is free to move around in space.
Suppose the ring is small enough such that the B field inside the ring can be consider as
constant. Suppose initial the B field inside the ring is Bo and the ring has a magnetic
moment p,. Also suppose finally the B field inside the ring is By and the ring has a

magnetic moment p, . Let the initial and final external kinetic energy of the ring be

denoted as (K.E.)ext0 & (K.E.)ext1. Also let the initial and final internal kinetic energy be
denoted as (K.E.)into & (K.E.)int,1. Then

(KE)y:=(KE)uo+ (B +1-B) ... (2.32.3)
(KE)os =(KE)yo+ (-1 -Bi+me-By) .. (2.32.4)
Thm 2.33

In Thm 2.32, the circular ring will produce its own B field. So the B field in the space
should be the sum of the external B field and the B field produce by the ring. So as the
ring move freely in space, the B field must be changing. Suppose

W= [ B %dr and  W,———[Br
2#.3 beginning 2/,[0 end

Then we have

w,=w, (2.33.1)

That is, the energy stored in B field keep constant as the circular ring moving around in
space. This can be easily understood since in all space there is no E field, and from the

Poynting theorem, there need a E-J in order for the quantity ZLI B%drto be changing.
Ho

So as the circular ring move freely in space, it is a process of that internal kinetic energy
transfers into external kinetic energy. This process occur because of the Lorentz force
qr, (t) x B(r;(t)) appear in (2.1.7).

Thm 2.34

Suppose the ring in Thm 2.32 has its e3 being fixed such that now it can only move
translationally. Then pis fixed. Suppose the external B field is not even in space. By

Lorentz force law (2.1.7), the circular ring will experience a translational force. It can be
proved that this force equals to



F=V@-B) ... (2.34.1)
Thm 2.37 (Helmhotz Thm)
et {V'F(r) =bo (2.37.1)
V xF(r) =C(r)

Let D(r), C(r) both go to zero faster than 1/r? asr — oo , and F(r) goes to zero as r — o
, then F(r) is uniquely given by

1 ¢ D(r)d’r 1 C(rd’r
F(r)=-V(— [y pvx(— [ 2L
") (47rj [r—r'| ) X(47rj- lr—r'| )
1 r-r 1 r-r
=— | D(r d’r +— | C(r' ’r 2.37.2
472"[ ( )|r—r’|3 +47z'J. ( )X|r—r'|3 ( )



