Quantum Mechanics (3)

Def 3.1

Consider a system with N identical particles. We can always divide the space into many
grids, and name them to be 1,2,3,....respectively. Suppose there are ni+An particles in
grid 1, nz to n2+An particles in grid 2, , n3 to nz+An particles in grid 3 and so on, then we
say the system belong to a coarse particle distribution of N(r).
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Axiom 3.2

At any instant, the world belong to exactly one definite coarse particles distribution. (For
simplicity, we have assumed the world consists of one kind of particles only)

Def 3.3

Consider the same system with N identical particles. We also divide the space into grids,
but now each grid has a much smaller side, I, such that | << L. We also name these grid as
1,2,3,....and so on. Suppose there are ni+dn particles in grid 1, nz to no+dn particles in
grid 2, , n3 to nz+dn particles in grid 3 and so on, where dn << An, then we say the system
belong to a accurate particle distribution n(r).



A

Lemma 3.4
For every n(r), 3N(r) such that n(r)e N(r).
Axiom 3.5

Although from Axiom 3.2, at every instant, the world belong to a definite N(r), however,
we cannot say which accurate particle distribution n(r) in N(r) the world is belonging to.

Axiom 3.6

For every n(r), 3 |n(r))in &n or .Bn, depends on whether the particles are fermion or
boson, (we have assume there are N particles), such that this n(r) is corresponding to.

Axiom 3.7
(@nm)y=6;, ... (3.7.1)
Axiom 3.8

At any instant, 3a wavefunction |¥) € F or By, depends on whether the particles are
fermion or boson, which correspond to the world.

Axiom 3.9

Suppose at time t, the world belong to Ne(r), then 3 a,,,y € Cfor n(r) € N¢(r) such that
the wavefunction at that time can be expressed as

|?) = Ynmen ) CnIn@) (3.9.1)



Axiom 3.10

Suppose at time t, the wavefunction of the world is |, t), and at time t+At, the
wavefunction of the world is |7, t + At), then |, t)and |, t + At)are related by

|, t + At) = e 73w, ) ..(3.10.1)
Thm 3.11

3 by € Cfor all possible n(r) such that

|5U, t +At) = Zn(r) bn(r)ln(r)) ...... (3111)
Axiom 3.12

At time t+At, there is a probability for every N(r) such that the world will belong to it.
The probability for the world to take Ni(r) is

P(World € Nl(r)) = Zn(r)ENl(r) |bn(r)|2 ...... (3121)

However, before doing this analysis, number of particles boundaries between adjacent
coarse particle distribution in each coarse positional grid (mentioned in Def. 3.1) has to
be adjusted such that they do not cut through the non-zeros region of wavefunction
amplitude. But on the other hand, these adjustment in boundaries should not lead to a
coarse particle distribution grid to concede its own nominal center number of particles,
such that each coarse particle distribution will remain exists and retain its identity
(although the region it rules over may have expanded or contracted).
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Axiom 3.13

After the world is found to belong to Nat(r) at time t+At, the wavefunction will
immediately given by

n(r r bnr
) = Ln(r)eN 4 () PrirIn(0)) .....(3.13.1)

\/Zn(r)eNt_Mt(r) [bp(r)l?
And the wavefunction a time t+2At will again be predicted by (3.10.1).
Def 3.14

DefineH = {f:R > C, [ |f(r)|?d3r < +o0}. Define Hy = H® --- ® H. We will adopt
N times

the notation |@) = @(ry,...,ry) for V|@) € Hy, forvN. Let |y), |@) € Hy, define
<§0|1’[)) = f "-fq)*(l‘l,...,rN)l/)(rl,...,I'N)d3‘r'1"'d3TN ...... (3.14.1)

Def 3.15

. s(N s5(N (N
Define P{% 3”,}: Hy - H,\,byP{g3 3r pl¥) = P{% 3r pY @y, Ty) =

%Zp cPY(rp,,...,1p, ) for V|yp) € Hy, where {=+1 for bosons and {=-1 for fermions.
Def 3.16

Define Fy = {|) € Hy: 31’) € Hy such that B |1") = |1)}. Define By = {|) €
Hy:3[') € Hy such that BV |y') = [)).

Def 3.17
Suppose |a;) € Hfor i=1,...,N, and (a;|a;) = &,;, define
|a1"'aN) = |a1)®”'®|a1v) ...... (3171)
(N
oy ay} = VNIBGD glay~ay) (3.17.2)
1
|a1"'CZN) =\/ﬁ|a1"'a{1\,} ....... (3.17.3)

where there are n, state among as,...,0n equals a.

Def 3.18

Define |i) € Hsuch that



1/13 ifr € gridi

i(r)={0 fregidi o (3.18.1)

where the definition of grid i should be referred to Def 3.3. Define

In(r) =11 22 33 o) L (3.18.2)

nq Ny ns

given that n(r) is an accurate particles distribution with ny+dn particles in grid 1, nz to
nz+dn particles in grid 2, , n3 to nz+dn particles in grid 3 and so on.

Def 3.19

Suppose the particles we are talking about are electrons (Recall in Axiom 3.2 we have
assumed the world consists of only one kind of particles), also given that the external
potential to these electrons are given by U(r), then the Hamiltonian operator Happeared
in (3.10.1) will be given by

~ K2 1
A= Sl g V3, + U} + B

e T (3.19.1)
i#j
Def 3.20

Let & be a complex vector space. (e,¢): X X X — Fis an inner product on ¥ iff

(IP1) (y,x + z) = (y,x) + (v, 2)
(IP2) (y, Ax) = Mx,y)
(IP3) (y,x) = {x, y)"

(IP4) (x,x) =0 and (x,x) =0 iff x=0 for x,y,z€X

Let (e,¢)be an inner product on . Then (%, (e,*)) is an inner product space.

Def 3.21

Q: X - Xis hermitian on the inner product space (%, (s,e)) iff
(Qx,y) = (x, Qy) forvx,yex ... (3.21.1)
Thm 3.22

Let Q be hermitian on the inner product space (%, {s,¢)). Then 3{@np} € Xwhich are
orthonormal and span %, such that 3{q,,} € R:



@(pnp = QqnPnp forvn andp =1,...,N, .....(3.22.1)

Thm 3.22a(Schmidt orthogonalization)

Let {1, }V_, € Xbe linear independent. Define {¢, }_, € Xby the recurring formula:
-1 {@i¥n)

Pn = {- zgfhm +y, (3.22a.1)

Then (@, ¢,) =0 forvn,m=1,...,N suchthatn # m.

Thm 3.23

Let all assumption in Thm 3.22 still valid. Suppose there exists another operatorR: X —
Xsuch that §, Rcommute. Then it can be proven that

§$np = Z;’V:l<§0nr'§§0np)§0nr ....... (3.23.1)

Then, let

Nn Nn Nn N“
R(Z anjk¢nj) = rnk (Z anjk¢nj) = Z anjk R(nr)(nj)¢nr = rnk (z anrk¢nr)
j=1 j=1 r=1

r,j=1
Rmnymy  Rmuymny | [ Wik
N ; [ ]:
Ranpynny = Rang)(any) | LEnnnk
Anik
Tnk ] ....... (3.23.2)
anNnk
For (3.23.2), we can find ¢, = Z?’Ql UnjkPnj e (3.23.3)

forvn,k = 1,...N,, where ¢, forvn,k =1,..., N,are orthonormal, and rnx for
vn,k=1,...,Nn such that

{9‘9”" ~ InPnk ....(3.23.4) and (3.23.4b)
RPnk = TPk

Thm 3.24 (Perturbation theory for the case of no degeneracy)

Suppose ﬁ0|E,g°)> = E£°)|E,(1°)>.....(3.24.1) for vV n with no degeneracy. We have

(A, + ,317’)(|E,§°)> + ﬁ|E,§1)> +o)= (EQ + BED + - )(|E,§°)> + B|E,§”> +
) (3242)



We have

HO|E§)> + H’|E,§°>> - E,§°)|E,§1)> + E,§1)|E,§°)> ...... (3.23.3)
Since |E§Ll>> ) |E(°)> ...... (3.23.4)
We have

1 0 0 7y’ 0 0 1 0
T B0 D) + 7[E) = B0 B ol |0+

E,E”|E,§°>> ...... (3.24.5)
Multiply (3.24.5) by (E,§°>|, we have

aDE + (B0 |EP) = 500 + B

nnn

= EWD = <E(0)|H |E(0)> ....... (3.24.6)

Multiply (3.24.5) by <E1§0)|,p # n, we have

5| =(0)
E(o)|H\En )
a,(;) = %TS)) ....... (3.24.7)

(

By some unknown reason, we can set a,,,, = 0, so overally we have

5| =(0)
5|5@) (5@ 5)
E, = |E(0)>+,BZ | HE,S")‘TSS) - (3.24.9)

m:tn

Thm 3.25 (Perturbation theory for the case of degeneracy)

Suppose 170|E7(1?)> = E,(lo) |E1(1?)>f0r vn,i. ... (3.25.1) We have to define a new set of
zeroth order wavevector:

|Eﬁ?)> % al) |E(O)> ....... (3.25.2)

Then, with analogue to (3.24.2), we have



(ﬁo+B17')(|E,§?)>'+ﬁ|Eﬁ)>'+"') _ (E150>+5E2>+...)(|Er§?>> +ﬁ|E(1)>
) ..(3.253)

So we have

170|Efl?>' + H|E,§‘l’)> = E,§°)|E,§?> E(1)|E(?)>' (3.25.4)
As we have

[EDY = Sy 0y [ES) ....(3.25.6)

substitute into (3.25.4):

nimj ~m

1 0 0 0 0 1 0
5 Al E()E()>+HZ] n1]|E(j)> EQY,. a® |E()>+

Dy 4O 5O
EDy |E]> L (3.25.7)

nz]

Multiply (3.25.7) by <E(°)| we have

a gO© 4 (0 ((0) (0) 0) , (V) (1) a®
nLnkE z ani] < |H |E > En Anink + E Anik

Define Hiniynjy = <E(0)|H |E,(S)> we have

' © _ 0O
YiHoomp i) = Eni G e (3.25.8)

As this can be done for all k, we have

' ' 0 0
H(nl)(nl) H(nl) (nNy) af,“-)l W afu.)l
: : : i N (3.25.9)
H (nNy)(n1) H (nNy)(nNy) ) LAning, anin,

where E,(lo)is Nn fold degenerate. From (3.25.9), we can solve for Er(l?for i=1,...,Nh and

TLll

(0)
for for i=1,...,Nn. So overally, we have
(0)

Tlan

En=EP+BED+-. L (3.25.10)



and

IEni>'=|Effi’)>'+- o ,(1(;3|E(0)> . (3.25.11)

Thm 3.26 (Time dependent perturbation theory)

Let the Hamiltonian A = H, + SH' ...... (3.26.1), where H,is time independent.
Suppose time independent |E,,;)for all n, i form a complete orthonormal basis for the
Hilbert space, such that each of them satisfies

Oy\E,;) =E,|Ey) .. (3.26.2)

Then any wavefunction with time evolution can be expressed as
_iEn,
1Y) =3, cnj(®e 7 |Eyy) (3.26.3)
Let cnj(t) can be given by
Crj () = e () + By (O + B () +- .(3.26.4)

By substituting (3.26.1), (3.26.3) & (3.26.4) into the time-dependent Schrodinger
equation, and using the relation (3.26.2), and by supposing at time t=0,

1) = |Ey) ....(3.26.5)

we can then derive that

“”(0) =0 fora=123,. ..(3.26.6)
1
¢! )(t) = —elwnl H(n (k)

for all n,j, where

1
o= E.-E) .. (3.26.7)
Hénj)(lk) = (En,-lﬁ'IElk) ....... (3.26.8)
Thm 3.27

L=1L,e,+Lye, +L,e,isan operator for angular momenta if L,, L, L, satisfies the
following algebra



[L.,L,] =inL,
[Ly,,L,] =ihL, .....(3.27.1a), (b) and (c)
[L, L] = inL,

It can be proved for any angular momentum operator L,, L,, let L = L, + L,, then
L?commute with the operator (L2e, + L%e, + L,e5). Let |1, I,, m;, m,)be the
orthonormal eigenvector to (L?e; + L%e, + L,e;) and span the Hilbert space (, with
eigenvalues I, (I, + 1)h%e; + I,(I, + 1)h%e, + (m, + m,)hesrespectively, then by
Thm 3.23, we can derive that 3

111, L, Lm) = Yo smy=mlli, Lo my, ma)(ly, L, my, my |1y, 1, [, m) .....(3.27.2)

for | = max{|m|,|l; — L,|},..., 11 + l,. The multiplicity=no. of possible value of | for a

fixed I, b=2min{l,, L} +1 ... (3.27.2a)
2|y, L, Lm)y = 1+ DR, L, Lm)y (3.27.3)
and

(I%e, + I2e, + L,e3)|ly, 1, Lm) = L,(I, + 1DAi%e; + L, (1, + Dhi’e, +
mhes|ly, 1, L, m) ....(3.27.4)

Thm 3.28
sinu. .
fw) = 1S small whenever u is not near to zero, and
o sin?
[ tdu=w L (3.28.1)

Thm 3.29 (Fermi’s golden rule)

Suppose everything in Thm 3.26 still valid. Suppose the H('nj)(lk)in (3.26.6) is time
independent, then by making use of (3.28.1), we can prove that

2 '
eSO = 2\ Hipio 26 (En —EDE L. (3.29.1)
Suppose now the H(,, jy k) Can be given by He, jyaxy = Henjyqiy Sin @ tor Hey iy =
Henjyary cos wt, where H("nj)(,k)is time independent, then , by making use of (3.28.1), we
can prove that

nj

2 "
Ies? (O1F = 2 Hinjy o O (B — By + D) + 6 (B —E =D}t ..., (3.29.2)



Thm 3.30

Let & be a Hilbert Space, L, L,, L,be hermitian operator in & such that

[L.,L,] =inL,
L, L,0=l, . (3.30.1)
[L, L] = inL,

Define 2 = [2 + [% + [Z. Let 3A € R%,{|a, B) € X: (a, B) € A}such that L2|a, B) =
ala, Band L,|a, B) = Bla, B)for V(a,B) € A, and {|a, B) € X: (a, B) € A}span %. Then

we have A € {(@,f): =2 (5 + 1)k’ for N =0,12,...and f = —,..., 3.

Thm 3.31

Suppose in Thm 3.30, we are restricted in the space {|a, B) € X:a = %(% + 1)A?}, then
L,,L,, L,can be represented by the matrices:

21) (1)(! (331 12) [fy]=§[? _0‘] ..(3.31.1b)
N [ (331.1c)

Suppose in Thm 3.30, we are restricted in the space {|a, B) € X:a = 1(1 + 1)A?}, then
L,,L,, L,can be represented by the matrices:

.o 1o U [ A

[Lx]=51 0 1 ....(3.31.2a) [Ly]=\/—§i 0 —if ..(3.31.2b)
0 1 0 0 i 0

A 10 0

[L,]=#l0 0 of ... (3.31.2¢)
0 0 -1

Thm 3.32 (Rotational Field Approximation)

Consider the following differential equation

¢(t) = fi(c(b), t)e @t + f,(c(t), t)ewzt (M)

Suppose w, >> w;. Suppose we solve (*) for t = nAdt, n=0,1,2,...by the recurring
formula

c((n+ DAt) = c(ndt) + c(nat)ae ... (#)



such that Atis comparable to T, (ZT—” = w,), but Atis not exactly equal to T.. Then we
2

will find that the term e®z¢oscillates very fast and on average it makes no contribution to
¢(n4t) in expression (*), then (*) can be approximated as

¢ = fi(c(o), p)etet (&)
This is the rotational field approximation.

Thm 3.33 (Central Field Approx.)

Consider an atom of atomic no. Z and with N electrons. The Hamiltonian will be given by

Ze?

4TTEGT

yiyw o< (3.33.1)

PR LAy P
it olri—rj|

iy N n o2
A =S (- vi -

We propose that we can find a V (r) such that the effect of H’ will be much smaller than
H,and H' can be treated by the perturbation method, where

—~ %2

Hy=XN(-_-Vvi+vey (3.33.2)

g _1lyN e N o Ze* o

DN FES Dy BB 58 el 4 U )) S (3.33.3)
i#j

andH=H,+HA . (3.33.4)

Thm 3.34

Every electron in the atom in Thm 3.33 will experience a B field. Suppose the ith electron
experience a B field equals to B, then this electron will possess an energy equals

1
Wi=—-ms-B L (3.34.1)

where p; ;is the magnetic moment of the ith electron arises due to its spin. It can be
proved that (by relativistic quantum mechanics)

Mg = —%si ....... (3.34.2)

Then the factor % in (3.34.1) arises from a relativistic effect named “Thomas’
precession”. From (2.25.5a)



B, =E xu=-Ex% (3.34.3)

Ei can be found form Thm 3.33

NY
Bi= =V V) +H
=1

But recall that in Thm 3.33, H'is negligible when comparing with Z?’zl V(r). -

oV (ry r;
E; = —V{IV,V(r)} = - L5 cor(3.34.4)

ari i
Substitute (3.34.4) into (3.34.3),

1 0v(ry

_ 1 oV o '
Bi " mc? ( ar; Ti) XPpi = mc2r; or; LL ...... (3345)
=W, = s L =f)si L (3.34.6)

2m2c?r; or;

=~ The Hamiltonian Hin (3.33.4) should be modified to

A=01,+H+H0, .. (3.34.7)

where

Ayoy=Y>w, . (3.34.8)

Thm 3.35

Let unimmg = Ru(MYim, O, O Xme (3.35.1)

be the orthonormal eignefunctions to the eigenvalues equation

hz
[—%V2 +V(r)]u = Eu

with eigenvalues E,,;, i.e.
hZ
[_%Vz + V(T')]ummlms = Emunlmlms ....... (3352)

Let u,,...., uybe as described in (3.35.1) with eigenvalues Ej, ..., Eyrespectively, then
we have



ﬁolul,...,uN) = E1 Nlul,---,uN) ......... (3.35.3)

.....

where E; v =2V, E; veen(3.35.4)

|Uy,... Uy ) is given by (3.17.3).

Thm 3.36

After we have found eigenfunction & eigenvalues to Hyin (3.34.7) in Thm 3.35, we are
now going to apply perturbation theory to A'and Hgyin (3.34.7). Suppose the atom we are
considering is carbon. Since (3.35.2), the eigenvalue depend on only n & I, but m & ms,
then we can picturize the states as

increasing
energy m=-1 m=0 m=+1

A

2p

2s

1s

When we fill in these boxes, we can see that the energy level E; _yin (3.53.3) in fact has
a 15 fold degeneracies:
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~When we treat A'&Hq,by perturbation method, we have to apply degenerated
perturbation theory. Firstly, we will assume the effect H'is much greater than Hgg, SO we
will firstly apply perturbation theory to A’, then Hyy. This approximation is called “L-S
coupling”.

When we apply degenerated perturbation theory to A', we will find that the original

.....

are eigenvectors to the operator L & S, where

L=y, .. (3.36.1)
s=yv.s, . (3.36.2)

(In our case of carbon, N=6) The 3 different energies & their corresponding eigenvalues
to L and S are shown below:



L=0, S=0
L=2, S=0

L=1, S=1

(Refer to Albert Messiah “Quantum Mechanics Vol II” Ch. XVII, §10)
Note that the energy levels above contains the following eigenvectors:

1S:0,0,0,0)
ZD: |210)_210)1 |210;_1;0)1 |2101010)1 |2101110)1 |2101210)
3p:1,1,-1,-1),|1,1,—-1,0),11,1,-1,1),1,1,0,-1),

‘$'$'$'$>
L S Mp Mg

11,1,0,0),11,1,0,1),11,1,1,—1),]1,1,1,0),

We can see that totally there are 15 eigenvectors, which is consistent with our previous

.....

Now, we are going to apply non-degenerate perturbation theory to the 1S state, and
degenerate perturbation theory to D and 3P state. From the two perturbation theory Thm
3.24 and Thm 3.25, we know that we have to evaluate the matrix element

(L,S,M;, Mg|Hso|L, S, M;, M¢). From Ch XVI § 11 of “Quantum Mechanics Vol 11"
written by Albert Messiah, we can prove that there exist a A, which is a function of radial
coordinates, i.e. A = A(ry,...,7y), such that

(L,S,M,, Mg|Hso|L, S, My, Mg) = (L, S, M,, Mg|AL - S|L, S, M;, M)
for vM,, Mg, M;, M ceeen(3.36.3)

Then, by making use of L. - S = %(fz — [? — §2), the energy level before will be further
splitted as



'So 1S,

1D, 1D,
3p,
P
3p,
3P,
1S, :/0,0,0,0)

'D,:[2,0,2-2),|2,0,2,-1),|2,0,2,0),|2,0,2,1),|2,0,2,2)
°P,:[11,2,-2),[11,2,-1),|11,2,0),[11,2,1),[11,2,1)
*P:|111,-1),[111,0),[111,1)

*p,:1,1,0, 0
LS7
Thm 3.37

In Thm 3.36, we assume that the effect of A'is much bigger than Hgy. Now, let us assume
the effect of Hyyis much bigger A instead. Then we will do the problem in the following
way. Firstly, we solve the eigenvalue equation:

2
[~ 2-V2+V(r) + f(r)L- Slu = Fu (3370
Let their solutions to be Unijm;» with eigenvalue E,,;;, where
JPrjm; = JG + DA Ungjm, ee(3.37.2)
]zunljmj = mjhunljmj ceeen(3.37.3)

DPunijm, = L+ DA Ungjm, eee(3.37.4)



hZ
[—%Vz + V(T') + f(T')L : S]unljmj = Enljunljmj (3375)
Let ug,...,un be the unljmjwith eigenvalues Ey, ...,En, then we have

(Hy + Ho)uq, ..., uy) = E;_wlug,..ouy) (3.37.6)

.....

where E;, y=YN.E .. (3.37.7)

.....

Then we can apply perturbation theory to treat the term H left.

Thm 3.50

Suppose L, L, L, *are the angular momentum operator mentioned in Thm 3.27.

X1 =y =z

Suppose @is an eigenfunction to L2&L ,with eigenvalues aand Brespectively. Define

y (3.50.1)
s (3.50.2)

N +i

—1

o
I

o

o

X
X

Then by making use of the commutation relations in (3.27.1a) to (3.27.1c), we can prove
that

ZC,p)=al, (3.50.3)
ZC_.p)y=al_e) . (3.50.4)

@Z @+<p) =B +h (l:,+(p) ....... (3.50.5)
L,_oy=FB-nI_¢) . (3.50.6)
Def 3.51

Let Q: X — Xbe an operator in the inner product space (X,{s,*)) 0*: X — Xis the adjoint
operation of Qiff

Of,g)=(f,0°g)  for Vf,gex .. (3.51.1)
(Qf.9)=(f.Q"9)

Thm 3.52

Let L, L, L, 12 beas mentioned in Thm 3.50. Let pbe an eigenfunction to to L2&L,with

1 =y =g

eigenvalues aand Srespectively. Since from (IP4) of Def 3.20,



(Lyo,Li@y=0 L. (3.52.1)
= (p,LtL,p) =0

SincelL, =L, + il

Il
o

>t =L,—il,=L_=(p L. Lip)=0 .....(3.52.2) and (3.52.3)
It can be proven from (3.27.1) that
L,=L-1%2-n, ... (3.52.4)

La-p-np20=>a=>p*+n3 .. (3.52.5)
By <I:7¢, _¢)>0and using similar procedure, we can prove that

a=p2-Hng . (3.52.6)

Thm 3.53

Let I:x L, L, [? be as mentioned in Thm 3.50. Let pbe an eigenfunction to to L2&L,with

1 =y =z
eigenvalues aand Srespectively. Since z-component angular momentum g + nhand g —

nAamust satisfies the relation (3.52.5) and (3.52.6), we can assert that there exist nz, n,
such that

I'e#0 but L7 e=0 . (3.53.1)
Also that

29 #0 but L[f2"'¢=0 . (3.53.2)
Write

Bp=B+mp L (3.53.3a)
Bo=F—-mp L (3.53.3b)

From (3.53.1), we have

L L,(Ltp)=(I*— L7 — hL,)(Lte) = (a — B — hB)(Lhp) = 0
Sa=p@G+H (3.53.4)

From (3.53.2), similarly, we have

a=p0B-n . (3.53.5)



From (3.53.4), (3.53.5), we can easily prove that

Br=-p. (3.53.6)
Since

Br—B=my+nx)h L (3.53.7)

=B = W =—B, (3.53.8)

and o =2 [y g oo (3.53.9)

~\We have the conclusion that if aand Bare allowed eigenvalue to L?and L,respectively,
then there must exist two integer N, n’, such that

n<N (3.53.10)
a=ZC+DH L (3.53.11)
p=CG-ndh L (3.53.12)



