
Can Artificial Intelligence Solve the 1947 Flying Saucer Mystery?

By James Carrion, September 25, 2024

If you have read my freely downloadable book The Roswell Deception
(https://www.keepandshare.com/doc13/21520/the-roswell-deception-by-james-carrion-
pdf-7-8-meg?nav=4), you know that one of the theories I propose was that the Flying
Saucer summer of 1947 could have been part of a US-led strategic deception operation
against the Soviet Union at the inception of the Cold War. One of the strategic goals for this
deception could have been to break the Soviet Diplomatic code, just like England broke the
German enigma code during WW2.

I proposed that flying saucer stories as well as other newspaper articles of Soviet
intelligence interest, were purposely planted in US newspapers as a sophisticated Chosen
Plain Text cryptologic attack to break the Soviet Diplomatic Code. To be clear, I do not
suggest that newspaper editors across the United States were coerced into this scheme as
some grand conspiracy. I show in my book that only the heads of the press associations
had to be in on this deception – the Associated Press (AP), the United Press (UP) and the
International News Service (INS). The 1947 articles I have transcribed and used in this
study are limited to those distributed to newspapers across the United Sates by these
press associations.

To understand how this would work, you first must understand the problem that American
cryptologists were faced with in 1947. The Russians used a cryptographic code to encipher
their communications sent from their US facilities back to Moscow Center. Since the
Russians had no direct lines of communication - no radio, satellite or phone connectivity to
Moscow - the Russians used the American telegraph companies to send their enciphered
messages. What they may not have known was that every enciphered message was being
copied and collected by the American code breakers under Project Shamrock
https://irp.fas.org/agency/army/mipb/2012_04-owen.pdf.

The Soviets probably suspected their messages were being copied but also thought their
messages were unbreakable. The Russians used a one-time-pad system that theoretically
was unbreakable if you followed all the rules. But the Russians got sloppy, and they
duplicated their one-time pads (a major no-no) and distributed these pads to their various
overseas representatives. There were Soviet trade organizations in the US that used the
duplicated one-time pads as well as Soviet intel agents from the KGB and the GRU in the
US. The true Soviet diplomats who had consulate work to perform also used these
duplicated pads.

https://www.keepandshare.com/doc13/21520/the-roswell-deception-by-james-carrion-pdf-7-8-meg?nav=4
https://www.keepandshare.com/doc13/21520/the-roswell-deception-by-james-carrion-pdf-7-8-meg?nav=4
https://irp.fas.org/agency/army/mipb/2012_04-owen.pdf

The Americans and the British soon learned of this duplicate pad distribution and began to
exploit it. The secret code breaking effort went through many name changes but eventually
settled on the code name Venona https://en.wikipedia.org/wiki/Venona_project .

If you want to understand the exact process the Soviets used to encipher their messages,
please read this article https://www.smithsonianmag.com/history/how-cipher-like-soviet-
180970032 which explains the process in detail. In this paper, I am going to offer the
simplified version that omits some of the steps that are not relevant to understanding how
Venona exploited the duplicate one-time pad use.

Let’s say you are a KGB agent in New York and need to send a message to Moscow. Let’s
make the message simple: Acorn has infiltrated the Manhattan Project. First lesson. The
Soviets didn’t use the real names of their own agents or sources in their communications
but instead the cover names of individuals and even locations.

 Let’s say Acorn is the cover name for some new source recruited as a spy by rookie KGB
agent Vladimir Danovich. So, Vladimir would hand off this six word message (written in
Russian of course) to his cipher clerk. The clerk would then consult his handy little code
book which contained a five-digit number corresponding to each Russian word and a
separate spell table for words that had to be spelled out letter by letter. Let’s say the
message was simplified to 3 words. Acorn infiltrated Enormous (Enormous was the
Russian cover name for the Manhattan Project). Let’s line up each word with its specific
five-digit code from the code book.

Acorn Infiltrated Enormous
97345 53087 79423

Next, the cipher clerk would grab the next unused page from his one-time pad which
consists of QTY 60 random five-digit code groups. Separately on each one-time pad page
was a five-digit group that acted as the page number to identify exactly which page in the
one-time pad was being used to encipher the message. Let’s say that page number was
64382.

This page number is added at the beginning of the message so now we have:

 Acorn Infiltrated Enormous
64382 97345 53087 79423

Then the clerk takes the first 3 five-digit groups from the one-time pad and lines them under
the encoded message. This stream of digits is known as the “key.” The clerk would then add

https://en.wikipedia.org/wiki/Venona_project
https://www.smithsonianmag.com/history/how-cipher-like-soviet-180970032
https://www.smithsonianmag.com/history/how-cipher-like-soviet-180970032

the encoded message digits to the one-time-pad digits without carry, resulting in the
following enciphered message.

 Acorn Infiltrated Enormous
 97345 53087 79423

New York
Encoded
Message

 9 7 3 4 5 5 3 0 8 7 7 9 4 2 3

Onetime
Pad Key

6 4 3 8 2 0 7 4 2 5 6 3 1 2 9 8 7 4 3 9

New York
Enciphered
Message

6 4 3 8 2 9 4 7 6 0 1 6 1 0 6 5 6 8 5 2

It was this enciphered message that would be sent over the telegraph back to Moscow.
Even if the American Code Breakers had intercepted the enciphered message, they could
never break the cipher if the one-time pads were truly used just once.

Note that the one-time-pad page number was not enciphered. This allowed the cipher clerk
on the receiving end in Moscow to quickly determine which one-time-pad page should be
used to decipher the message.

Here’s where the plot thickens. Another Russian KGB agent Mikhail Kandinsky in San
Francisco wants to send his own enciphered message back to Moscow. Unbeknownst to
any of these parties, the San Francisco cipher clerk was given an exact copy of the same
one-time-pad that was given to the New York cipher clerk. This was a major screw-up on
behalf of the organization managing Soviet cryptography.

If Mikhail’s message is San Francisco Source Recruited, his cipher clerk may simplify this
to: Babylon Source Recruited (Babylon is the Soviet cover name for San Francisco).

 So, the San Francisco cipher clerk consults the code book and finds the code groups that
correspond to each word.

Babylon Source Recruited
85213 29645 24362

Let’s say the San Francisco cipher clerk takes page 64382 from his one-time-pad to
encipher the message. Since this is a duplicate of the one-time-pad being used in New
York, all of the one-time pad key groups are exactly the same. The resulting encipherment is
shown below.

One-time pad
page

Babylon Source Recruited

64382 85213 29645 24362
San
Francisco
Encoded
Message

 8 5 2 1 3 2 9 6 4 5 2 4 3 6 2

Onetime
Pad Key

6 4 3 8 2 0 7 4 2 5 6 3 1 2 9 8 7 4 3 9

San
Francisco
Enciphered
Message

6 4 3 8 2 8 2 6 3 8 8 2 7 6 4 0 1 7 9 1

After the American telegraph companies gave a copy of the KGB enciphered messages sent
in New York and San Francisco to the American codebreakers, the codebreakers would
notice that the NY and San Francisco messages were “in-depth” meaning they were
enciphered using a duplicated one-time pad. They could tell that because both messages
started with 64382, indicating they were enciphered from the same one-time-pad page.

Let’s review what we have learned so far of the Soviet cryptographic system, which
consisted of 3 layers.

1. Cover Name Layer - the first layer was the use of cover names. Many individuals
working on behalf of Soviet Intelligence were given cover names. Here are some
notable historical figures and their Soviet cover names.

a. Julius Rosenberg (atomic spy) – cover name was LIBERAL or ANTENNA
b. Klaus Fuchs (atomic scientist and spy) – cover name was REST or CHARLES

2. Encoding Layer – taking the words and cover names to include in the message and
assigning each their corresponding five-digit number from a code book. Think of the
code book as a database of fixed code groups mapped to words. Example: 00001 =
artillery, 00002 = plan, 00003 = secret, etc. If a word had to be spelled out letter by
letter, for example Rosenberg’s cover name LIBERAL, there was a spell table in the
code book that had a different code group for each Latin alphabet letter.

3. Enciphering Layer – the encoded message was then enciphered using a one-time
pad.

Imagine you are an American cryptologist in 1947, and the telegraph messages are piling
up on your desk. Where do you begin? By peeling away each layer in reverse to get to the
next underlying layer.

1. Strip the Encipherment Layer - This could easily be done with messages in-depth
(duplicated one-time pads) at least for their common length. If message A was 12
code groups long and was in depth with message B which was 23 code groups long,
cryptologists could strip away the key for the first 12 code groups for each message.

2. Strip the Encoding Layer - this is the difficult part as for each code group in-depth,
there are 100,000 possible code group pairs. If the cryptologists could successfully
split out these pairs to their original values, each 5-digit group would correspond to
a word in the Russian code book (or letter from the spell table). But in 1947,
according to the NSA, it was a code book the cryptologists did not have and would
have to painstakingly recreate out of thin air, word by word.

3. Even if by some incredibly good luck, the cryptologists had a copy of the Soviet code
book (perhaps a stolen copy), and the underling plain text message were revealed,
any real Soviet identities (spies) were concealed by the last layer, cover names.
Knowing a cover name doesn’t clue you in on who the real person is.

Let’s put ourselves in an American cryptologist’s shoes and do the hard work. Again, this
has been simplified somewhat to make it easier to understand.

Strip the Encipherment Layer

Here are the messages from New York and San Francisco, enciphered with the same one-
time pad.

New York
Encoded
Message

 9 7 3 4 5 5 3 0 8 7 7 9 4 2 3

Onetime
Pad Key

6 4 3 8 2 0 7 4 2 5 6 3 1 2 9 8 7 4 3 9

New York
Enciphered
Message

6 4 3 8 2 9 4 7 6 0 1 6 1 0 6 5 6 8 5 2

San
Francisco
Encoded
Message

 8 5 2 1 3 2 9 6 4 5 2 4 3 6 2

Onetime
Pad Key

6 4 3 8 2 0 7 4 2 5 6 3 1 2 9 8 7 4 3 9

San
Francisco
Enciphered
Message

6 4 3 8 2 8 2 6 3 8 8 2 7 6 4 0 1 7 9 1

We would start by ignoring the first code group which is the one-time pad page indicator
and focus on the subsequent code groups. We line up the enciphered messages and then
subtract without borrowing (remember they were enciphered with add without carry) one
from the other, digit by digit. That would look like this.

New York
Enciphered
Message

6 4 3 8 2 9 4 7 6 0 1 6 1 0 6 5 6 8 5 2

San
Francisco
Enciphered
Message

6 4 3 8 2 8 2 6 3 8 8 2 7 6 4 0 1 7 9 1

Subtract
Without
Borrowing

 1 2 1 3 2 3 4 4 4 2 5 5 1 6 1

What we have effectively done is strip away the encipherment layer. The result from the
subtraction also represents the difference between the original encoded messages. In
other words, if we performed the same subtract without borrowing, but this time
subtracting the original New York encoded message and the San Francisco encoded
message, the result should be the same as that of subtracting the enciphered messages.
Let’s prove that.

New York
Encoded
Message

6 4 3 8 2 9 7 3 4 5 5 3 0 8 7 7 9 4 2 3

San
Francisco
Encoded
Message

6 4 3 8 2 8 5 2 1 3 2 9 6 4 5 2 4 3 6 2

Subtract
without
borrowing.

 1 2 1 3 2 3 4 4 4 2 5 5 1 6 1

Let me illustrate this a bit differently in case you are not following. Subtracting without
borrowing the two green enciphered messages would produce the same result as
subtracting without borrowing the two blue encoded messages.

New York
Encoded
Message

6 4 3 8 2 9 7 3 4 5 5 3 0 8 7 7 9 4 2 3

Onetime
Pad Key

 0 7 4 2 5 6 3 1 2 9 8 7 4 3 9

New York
Enciphered
Message

6 4 3 8 2 9 4 7 6 0 1 6 1 0 6 5 6 8 5 2

San
Francisco
Encoded
Message

6 4 3 8 2 8 5 2 1 3 2 9 6 4 5 2 4 3 6 2

Onetime
Pad Key

 0 7 4 2 5 6 3 1 2 9 8 7 4 3 9

San
Francisco
Enciphered
Message

6 4 3 8 2 8 2 6 3 8 8 2 7 6 4 0 1 7 9 1

Note: Subtracting without borrowing the green enciphered messages from each other or
the blue encoded messages from each other produces the same result.

Differencing
result. See
note above.

 1 2 1 3 2 3 4 4 4 2 5 5 1 6 1

Cryptologists examining two messages in-depth had the green enciphered messages in
front of them and could easily perform the subtraction operation to get the results. But they
had no easy way to take those differencing results and derive what the blue encoded
messages were.

The cryptologists could essentially strip away the green encipherment by using this
process but are left with just the differencing results 12132 34442 55151. They don’t know
for each differencing result what the corresponding blue pairs are that make up the original
encoded message, as there are 100,000 pair possibilities for each group.

In other words, for the first differencing result 12132, the number of possible pairs of 5-digit
numbers that could be subtracted without borrowing from each other and result in 12132 is
100,000 pairs, with 97345 and 85213 just one possible pair of these 100,000. If all we know

is the difference of 12132, we have 100,000 guesses at what the original encoded group
pair is. Yikes!!!

But what if I already knew one of the encoded message groups? Let’s say I knew that from
the New York message, the first encoded group was 97345. Well then figuring out what the
unknown encoded group from the San Francisco message would be easy as we take our
known number 97345 and subtract without borrowing our difference value of 12132 and
that reveals 85213, the corresponding encoded group from the San Francisco message.

Figuring Out the Original Encoded Messages

To recap; after the encipherment is stripped away and reveals the differencing results, we
then try to determine the encoded message group pairs for each differencing result, where
each pair is one of 100,000 possibilities.

Rather than trying to brute force guess which of the 100,000 possible pairs is the right one,
could we speed things up?

One method we could use is what is known in cryptology as a Chosen Plaintext Attack. We
plant a newspaper story that we believe a Soviet agent may be interested in sending back
to Moscow Center as intelligence.

For example, let’s say one of our two fictitious KGB agents, Vladimir Danovich from New
York sees the following article in the New York Times:

IRAN HAS ITS DISC PROBLEM

TEHRAN, July 9. AP - The flying saucer fever spread to Iran today.

Press reports from Zabool, Shosef and Sarbisheh near the Afghan frontier said
residents there had observed strange "starlike bodies" in the sky which exploded
loudly, leaving a cloud of smoke.

The " newspaper Mehri Iran said the objects apparently had something to do with a
secret weapon, which it dubbed "V-20."

If Vladimir sends this article to Moscow Center by enciphered telegraph, and the same one-
time pad page is also used for another KGB message sent by KGB agent Mikhail Kandinsky
in San Francisco to encrypt a different planted news story, American cryptologists now
have a very powerful cryptologic inroad.

They could strip the encipherment layer and through trial-and-error figure out the
underlying encoded group pairs (each group with 100,000 possibilities) and rebuild the
Soviet code book out of thin air. Once they had the code book recreated, it would help

them break those messages that were of real intelligence value, not based on planted
newspaper articles. One of the trial-and-error methods the cryptologists could use to
guess the encoding pair groups is called crib dragging.

Crib Dragging.

Crib dragging is a technique used in cryptanalysis to help break codes or ciphers. A crib is
a piece of known or guessed plaintext that corresponds to a section of ciphertext. It's like a
small hint or starting point. Dragging refers to moving this known piece of text along the
ciphertext to find where it fits best. At each position, you use the crib and the ciphertext to
see what the encoded groups could be if your guess is correct. You look for positions that
look meaningful or reveals patterns.

I proposed in my book The Roswell Deception that in the summer of 1947, planted “flying
saucer” newspaper articles was part of a chosen plaintext attack, for the purpose of
creating “cribs”. Planted newspaper articles of interest to Soviet Intelligence agents in the
US, enciphered and sent back to Moscow via the telegraph companies, could be used as
"cribs" by American cryptologists.

Getting the Ciphertext:

Since the Soviets probably believed flying saucers were some new airborne American
weapon, they would have been anxious for their agents on American soil to report back
flying saucer intelligence. The only secure way they had to do that quickly was sending
enciphered telegraphs. Project Shamrock provided these enciphered messages back to the
Americans, who now had both the plaintext (the planted newspaper articles) and the
cipher texts (the enciphered telegrams).

Crib Dragging Process:

After stripping the encipherment layer off for messages in-depth (duplicated one-time pad
use), American cryptologists could "drag" the known plaintext (the crib) along the
ciphertext. In essence, crib dragging in a chosen plaintext attack is like using a key you
crafted (your chosen plaintext) to probe the lock (the encryption system), helping you
understand how the lock works and potentially open other similar locks (decrypt other
messages).

Speeding Up Crib Dragging

Crib dragging could be enhanced if you have an anchor point in the enciphered message to
start off your analysis with. In the earlier flying saucer article, a word that would be
guaranteed to be enciphered by the Soviet agents would be the name of the secret weapon
mentioned, the "V-20."

Since the Soviet code book would not have a pre-assigned code group for this name, the
cipher clerks would have spelled it out using the spell table of the code book. This was
used to spell out anglicized names. Each letter in the Latin alphabet was assigned its own
code group and there was a code group for “Start Spell” and “End Spell”. So in this
example, “V-20” would have been encoded as follows.

StartSpell V 2 0 EndSpell
02987 34299 09087 11342 83098

Anything encoded with the spell table could act as a starting anchor point for analysis as it
constitutes the low-hanging cryptologic fruit. American cryptologists could first attempt to
reveal the spell table code groups and then once they isolated them, guess from the known
plain texts the words that preceded or followed. Anytime the cryptologists saw the code
group 02987, they would know a word was being spelled out, with the end of the word
followed by code group 83098.

Spelled-out words then became analogous to the cartouches in Egyptian hieroglyphics
which designated the names of Egyptian royals. The more words that the Soviets were
forced to use the spell table for, the more anchor points American cryptologists had to
guess at the surrounding code groups.

I apologize for this very lengthy lesson in 1947 cryptology, and indeed there is more
complexity to it than my simplified version, but it was necessary so you can understand
where Artificial Intelligence can step in to solve the 1947 saucer stories.

I told you earlier that the Soviets did not like including the real names of their agents in their
encoded messages, preferring to use cover names when referencing their contacts and
agents. The exception would be when they included a name that was not an asset or did
not have a pre-assigned code name. For example, Venona cryptologists discovered a list of
prominent Manhattan Project scientists in some of the Soviet messages that were not
covered by a code name, but literally spelled out letter by letter using the spell table.

What if American cryptologists knew of some of these Soviet cover names and purposely
planted these proper names in the flying saucer newspaper articles? This would allow
cryptologists to match planted messages with real messages where the same cover name
was used. For example, if there was a known Soviet agent with cover name John, then
planting the first name John in the saucer stories could be of cryptologic benefit.

What would be needed to test this hypothesis would be:

1. A list of known compiled cover names of Soviet agents. Historian and researcher
John Earl Haynes compiled exactly that in his Cover Name, Cryptonym, Pseudonym,
and Real Name Index available on his website at:
https://www.johnearlhaynes.org/page66.html a Cover Name, Cryptonym,
Pseudonym, and Real Name Index.

2. A corpus of the flying saucer newspaper articles from 1947. Since the height of this
activity was from late June to mid-July 1947, I gathered newspaper articles from this
time frame (AP, UP, INS press association articles) and then painstakingly
transcribed by hand the flying stories to text files.

3. A narrow Artificial Intelligence that could compare the proper names extracted from
the 1947 newspaper articles and match them to the cover names from the Haynes’s
index and then calculate the probability that the matches were statistically
significant or just coincidental (random chance).

But the real 1947 newspaper data I had available to me was not as extensive as I would
have liked. I decided to supplement the real flying saucer articles with artificial data that I
had an AI create. Why? Because, if the flying saucer articles were purposely planted, they
must have been optimized for a chosen plaintext attack and I could get AI to do the same.

I started the artificial data generation process by first asking ChatGPT for some advice.

“I want to create a large dataset of artificially generated newspaper articles that are
optimized for the purpose of cryptologic gardening. How could I generate this large
dataset?”

ChatGPT was kind enough to reply:

Creating a large dataset of artificially generated newspaper articles optimized for
cryptologic gardening requires a few key steps. These include text generation, ensuring
diverse and realistic content, and encoding the articles in ways that are useful for
cryptologic analysis. Here’s a comprehensive approach:

1. Text Generation using Language Models

• Customization:

o Generate articles on various topics (politics, sports, science, etc.) to mimic a
real newspaper. Ensure that the vocabulary, sentence structure, and content
style vary across articles.

o Include common newspaper elements like headlines, subheadlines, quotes,
and bylines.

https://www.johnearlhaynes.org/page66.html

2. Optimization for Cryptologic Gardening

• Diverse Text Patterns:

o Vary sentence lengths, word choice, and paragraph structure to create
diverse text patterns. This helps in creating rich bigram and trigram
distributions, which are useful for cryptologic analysis.

• Incorporate Common Phrases:

o Include common phrases, idioms, and clichés found in newspaper writing to
reflect realistic text patterns. Also, deliberately include cryptologic phrases
or structured sequences that could serve as plaintexts in encryption
schemes.

3. Automation and Scaling

• Automate Article Generation:

o Create a script or use a platform to automate the generation of articles. You
can set up a loop that generates thousands of articles, ensuring each one is
unique and diverse.

• Dataset Structuring:

o Organize the generated dataset into directories based on topics or encoding
methods. Maintain a consistent naming convention for easy retrieval and
analysis.

4. Quality Control

• Review Generated Text:

o Randomly sample and review generated articles to ensure they meet the
desired quality and diversity.

I used a different AI, Groq instead of ChatGPT for the actual artificial data generation. After
getting an API key from Groq https://groq.com/ and creating a Python script that would
request all the data I needed. I set it loose on Groq by requesting it create 10,000 simulated
newspaper articles from 1947 that were optimized for cryptologic gardening (planted
newspaper articles) on any topic - not even mentioning “flying saucers” - and then ran a
second request for 10,000 simulated newspaper articles from 1947 on just any mundane
topic but without any crypto gardening optimization. Each generated newspaper article
was saved into its own text file.

https://groq.com/

This is the Groq query I ran for the 10,000 crypto-gardened optimized newspaper articles:

“You are a 1947 American cryptologist. Your target is Soviet Intelligence. Create a 400
word or less newspaper article to be planted in an American newspaper. This should
be a single article using a single subject. Use commonly used phrases, sentence
structures and cliches typical of news articles from 1947. Incorporate common and
high-frequency words. Embed specific keywords or phrases that are expected to be of
particular interest to the encryption target. Article must be plausible. Deliberate use of
words with diverse letter frequencies with unique or less common letters. Repetition
of key word and phrases. Strategic placement of common digraphs and trigraphs.
Inclusion of proper names of varying lengths that are repeated through the article. Use
proper names from a variety of linguistic and cultural origins. The article should read
exactly as it would in the newspaper. The article should appear to be verbatim from a
1947 newspaper.”

And this is the Groq query I ran for the 10,000 mundane newspaper articles.

"You are a 1947 American Newspaper reporter. Create a 400 word or less newspaper
article on random subjects. This should be a single article using a single subject. Use
commonly used phrases, sentence structures and cliches typical of news articles
from 1947. Article must be plausible. Inclusion of proper names of varying lengths that
are repeated through the article. Use proper names from a variety of linguistic and
cultural origins. The article should read exactly as it would in the newspaper. The
article should appear to be verbatim from a 1947 newspaper."

I set my script to loop and came back hours later and I had 20,000 artificially generated
very plausible 1947 newspaper articles to work with.

I placed the real 1947 flying saucer articles extracted from newspapers in a folder labeled
1947SaucerArticles, the Groq-created artificial 10,000 crypto-gardened optimized
newspaper articles in a folder labeled GardenedArticles and the Groq-created artificial
10,000 mundane newspaper articles in a folder labeled NotGardenedArticles.

I then wrote a Python script to perform the following steps:

• Randomly select within each folder the newspaper articles to process.
• Extract from each selected article only the proper names of persons and then check

them against the Haynes’ index of Soviet cover names to see if it could find
matches.

• Run statistical analysis and once the name matches reached statistical significance
to a high degree, it would stop processing additional articles in that folder and move

on to the next folder. The Saucers folder was processed first, then the Gardened
folder and lastly the Not Gardened folder.

• The script could be set for multiple runs.

I created two different versions of the script, one that applied binomial statistical analysis,
and a second script that applied fisher’s exact statistical analysis.

Before I reveal the results of my testing, let me preface it by saying that if you feed this
model any large enough corpus of text, it will eventually match enough names in the
Hayne’s cover name index to show a statistical significance. I was interested in knowing
how large the corpus of text had to be to reach statistical significance, so I focused my
analysis on:

• How many files from each corpus of data (real saucer articles, artificially created
gardened articles and artificially created not gardened articles) would have to be
processed to achieve statistical significance?

• How would each corpus’ result correlate with the other corpuses?

I ran each script for 100 runs and had it output a line chart to show the correlation of
results. For the Binomial Test Analysis, here are the results for 100 runs. Note the very
close correlation between the saucer articles and the gardened articles where was able to
achieve statistical significance around 50 articles. Also note that it had to process twice as
many not-gardened articles to achieve statistical significance.

I initially expected that the gardened articles which were artificially generated would have
been more closely correlated to the not gardened articles, also artificially generated, but
that was not the case. Instead, the artificially generated gardened articles more closely
correlated with the real saucer articles.

What is causing this odd correlation? How did Groq get the gardened articles to match the
Haynes’ index to a statistical significance at half the rate of the non-gardened articles,
when both corpuses are of equal length and contain equal numbers of proper names to
compare?

I am not a statistician, nor am I a data scientist, so I welcome the input of those who are
and can analyze and interpret this data further. Perhaps it is in the nature of the Groq model
where this mystery lies.

Groq which generated the artificial data is a type of neural network called a transformer.
Specifically, it’s a variant of the BERT (Bidirectional Encoder Representations from
Transformers) model, which is a pre-trained language model developed by Google.

Transformer-based neural networks are generally considered black box models, which
means that it is often difficult to understand how it formulate its responses. Here's why:

1. Complexity: Transformer models, such as BERT, GPT, and their variants, have a very
complex internal architecture with multiple layers of attention mechanisms, feed-forward
networks, and other sophisticated components. This complexity makes it difficult to fully
understand and interpret the internal workings of the model.

2. Lack of interpretability: Transformer models are typically trained in an end-to-end
fashion, where the input data is transformed through multiple nonlinear layers to produce
the desired output. This process is not easily interpretable, as it's difficult to trace how the
input features are being processed and combined to generate the final output.

3. Opaque decision-making: The decisions made by transformer models are often not
easily explainable. The model's outputs are the result of complex interactions between the
various components, making it challenging to understand the specific reasons behind a
particular prediction or decision.

4. Lack of transparency: Transformer models are often treated as black boxes, where the
internal logic and decision-making process are not readily accessible or understandable to
the end-user. This lack of transparency can be a concern in applications where the model's
decision-making process needs to be explainable, such as in high-stakes decision-making
or sensitive domains.

When I asked Groq to put itself in the shoes of a 1947 American Cryptologist targeting
Soviet Intelligence in 1947, it is not clear how it generated the resulting artificial newspaper
articles. For example, Groq could have found and used the Hayne’s index of Soviet cover
names and injected those into its articles, even though I didn’t ask it to specifically do that.
There is simply no way to understand it’s complicated reasoning.

For the Fisher Exact Analysis, the results of 100 runs were very similar to that of the
Binomial Analysis, showing the same close correlation of Saucer to Gardened articles.

Would anything change if I ran each analysis 1,000 times instead of 100? No, the exact
same correlations persist:

For the Binomial Analysis – 1000 Runs

For the Fisher Exact Analysis – 1000 Runs

The correlations are highly intriguing and suggest that there is something here to explore
further. Related hypotheses for why flying saucer stories peppered the headlines of US
newspapers in 1947 can also be tested by Artificial Intelligence.

For example, I have noticed that proper names in 1947 flying saucer articles would often be
misspelled in different newspaper printings from the same newswire articles (Associated
Press, United Press, International News Service). In a 1947 flying saucer article that
mentions the name Frank Ryman, one newspaper would show the proper spelling of
Ryman’s last name, while another newspaper would show it spelled as Ryan, even though
both newspapers received the same distributed news wire article from the Associated
Press.

Was this just a human typographical error or was it purposeful for cryptologic analysis
reasons? One way to show if this is statistically significance would be to take a sample of
non-flying saucer newswire articles from 1947 and calculate the misspelling error rates for
proper names vs the misspelling error rates for flying saucer newswire articles across the
newspapers that reprinted the press association distributions.

Artificial Intelligence is changing our world daily and provides a highly useful toolset that
can be used for unique applications. This includes historical research and analysis or in the
context of this paper, solving one of our oldest mysteries – why in the summer of 1947 was
the flying saucer myth born? If you are intrigued as I am by the possibilities, please reach
out to me at james_carrion@hotmail.com. If you are a data scientist and wish to review this
analysis and crunch the numbers for yourself, I will be happy to provide you a copy of my
code and datasets.

mailto:james_carrion@hotmail.com

