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Abstract

Given a markov chain modeling chemical interactions in cells whereby the birth and death rates are
specified, we can obtain a stationary state distribution representing the abundance of molecules in the
cell. However, we are interested in solving the inverse problem of identifying the rates from biological
data representing stationary distributions. Specifically, we choose to solve for the kinetic order (n) when
we specify mass action as the birth rate of one of our variables, or the Hill coefficient (n) and half-max
(K) when we specify the Hill function as the birth rate. We achieve this by evaluating the 2nd and 3rd
degree invariants (variance and skewness invariants) based on the data at different n and K values and
numerically solving for these parameters.

I. INTRODUCTION

A. Context
Inferring interactions in biochemical reaction networks is an area of active interest. Every

signal in cellular biology is transmitted through a network of interacting proteins, RNA
molecules, and DNA. With the advent of genomics, transcriptomics, and proteomics, it became
possible to measure these biological molecules in cells; this data is used to draw correlations and
predict interactions. However, there is very limited kinetic information contained in these static
measurements: there are many different interpretations of two proteins having high expression
in the same sample. With the advent of single-cell technologies, we can obtain distributions of
biological molecules in cells, and with multiplexing, we can obtain joint distributions, which
allow us to measure the covariance between molecules of interest at the single-cell level. Although
most single-cell measurements are static, these static measurements give us the stationary joint
distribution of molecules in cells, which contains information about the dynamic interaction
between molecules. Broadly, our goal is to exploit the dynamic information hidden in stationary
joint distributions to infer which molecules interact dynamically.

More specifically, biologists can obtain joint (stationary) distributions of biochemical species
in cells from multiplexed single-cell analyses such as iterated immunofluorescence, imaging
mass spectrometry, or single-molecule FISH. With an assumption of ergodicity, one can get
the stationary distribution from a “static” data source, like the ones listed here. We want to
infer regulatory motifs from these stationary distributions. In this paper, we take a reductionist
approach: although our final objective is to study larger systems, we first focus on two and three
component models to characterize the applicability of our method. We then test this on a larger
network to see if our method can be applied more generally.

B. Background
In a 2016 paper, Hilfinger and co-authors obtained invariant equations for birth-death processes

[1]. Let x = (x1, · · · , xn) be a list of species, and let k be the index for a set of reactions with
rates rk(x), that change the quantities of x = (x1, · · · , xn) by δk = (δk,1, · · · , δk,n).

x x+ δk
rk(x) (1)
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We denote the birth flux of xi by R+
xi

and the death flux of xi by R−xi , which are defined by

R+
i (x) = R+

xi
=
∑
k

δk,i>0

δk,irk(x) R−i (x) = R−xi =
∑
k

δk,i<0

|δk,i|rk(x)
(2)

Let 〈si〉 be the average step sizes of ith component of the system. Hilfinger and colleagues
showed that for each component xi (1 ≤ i ≤ n),

〈si〉
〈xi〉

=
Cov(xi, R−xi)
〈xi〉

〈
R±xi
〉 − Cov(xi, R+

xi
)

〈xi〉
〈
R±xi
〉 (3)

We can specialize these results to a two-component model of the form in Equation 4. If species
x1 regulates the birth rate of x2 by a specified function R+

x2
= f(x1), then the joint distribution

of x1 and x2 must satisfy Equation 3. Hence, if the joint distribution of x1 and x2 does not
satisfy the invariant relations, then R+

x2
6= f(x1). This invariant provides a way to rigorously

reject hypotheses about R+
x2

.

x1 x1 + 1 x2 x2 + 1

x1 x1 − 1 x2 x2 − 1

λ1 f(x1)

β1x1 β2x2

(4)

In this paper, we extend the approach of Hilfinger and co-authors by using invariants as a
technique for parameter identification. Specifically, we assume the functional form of R+

x2
,

without assuming all parameters. Then, we simulate the distribution using at least 108 reactions
in each variable as a ”good distribution” and test whether various values of those parameters
satisfy Equation 3. If the equation is not satisfied, then those parameters can be rejected. Ideally,
we could use the invariant equation to determine the correct parameters: that is, if the equation
is satisfied for a unique set of parameters.

We do this for two functional forms, corresponding to two reaction kinetics models: the mass-
action model, given by R+

x2
= λ2x

n
1 and the Hill function model, R+

x2
= λ2

xn1
xn1+K

n . The invariants
do not depend explicitly on λi, but our goal is to use them to reject all values of n (resp. (n,K))
except for the correct parameter value (resp. values). In mass-action kinetics, n corresponds to
the reaction order; commonly, this is the number of molecules of x1 involved in the single-step
reaction. In Hill kinetics, n is called the Hill coefficient, or cooperativity coefficient; it controls
the “sharpness” of the response function with respect to the concentration of x1. The parameter
K represents the dissociation constant for the interaction that facilitates the reaction.

Existing work on biochemical stochastic models involve writing down the model, fitting the
parameters, and comparing the distribution with known data. Numerous methods have been
used in the parameter fitting process. For example, Pedraza and van Oudenaarden (2005) [2]
uses moment closure schemes to approximate Hill function interactions. Similarly, equality or
differential equations on moments that typically involves time series information or snapshot
of expressions have been used by So, et al. (2011) [3]. Bayesian methods that sample from
parameters space and update according to some distance metric is also used by Liepe et al.
(2014) [4]. Our approach focuses on the covariance between pairwise expressions instead of the
whole joint distribution. We do not require any temporal information. Even though we need to
specify the analytical formula of the birth rate, the formula can in general be any scalar multiple
of itself. We are also able to leave upstream and downstream variables unspecified and focus on
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pairwise relationships in the larger network. This may allow us to easily generalize our method
to large networks.

C. Summary
In Section II, we derive an invariant of skewness from the joint distribution of two variables,

using a similar approach to Hilfinger et. al. In Section III, we present our method for identifying
n (reaction order) in a two component model with mass-action kinetics using the 2nd invariant.
Using simulations, we show that this method succeeds across parameter space and reaction orders
when the true distribution is known and is relatively robust to sampling error. In section IV,
we examine how we can extend this method to three component models with linear network
topology and mass-action kinetics: if x0 influences the birth rate of x1, and x1 influences the
birth rate of x2, we recover the correct interactions, although in some cases, we also recover
spurious interactions (e.g. x0 influencing x2 directly). We discuss various techniques to reject
the spurious interactions. In Section V, we use the second and third degree invariants to infer
the correct n and K (Hill coefficient and apparent dissociation constant, respectively) for two
component models where x1 influences the birth rate of x2 through a Hill function. In Section
VI, we discuss the limitations of the method, future work, and connections to biological data.

II. OBTAINING A SKEWNESS INVARIANT

In this section, x is a variable governed by a birth-death process with reactions rk(x, yi).
We obtain an invariant by setting the derivative of the skewness of x to 0: at stationarity, the
distribution of x must satisfy this invariant.

Lemma II.1. Let x be a variable governed by a birth-death process with birth flux R+
x and

death flux R−x . The skewness of the distribution of x is given by:

d 〈(x− 〈x〉)3〉
dt

= 3Cov
(
x2, R+

x − R−x
)
+

〈∑
k

δ3krk(x)

〉

− 6 〈x〉Cov
(
x, R+

x − R−x
)
+ 3Cov

(
x,
∑
k

δ2krk(x)

) (5)

Proof. See Appendix 1.

Corollary II.1. At stationarity, by setting Equation 5 equal to zero, we obtain the following
invariant:

0 = 3Cov
(
x2, R+

x − R−x
)
+

〈∑
k

δ3krk(x)

〉

− 6 〈x〉Cov
(
x, R+

x − R−x
)
+ 3Cov

(
x,
∑
k

δ2krk(x)

) (6)

Proof. See Appendix 1.

Corollary II.2. With hypotheses as in Corollary II.1, and additionally, if |δk| = 1 ∀k, then the
variance invariant from Equation 6 is given by

Cov (x, R+
x − R−x )

〈x〉
〈
R±x2
〉 =

Cov (x2, R+
x − R−x ) + Cov (x, R+

x + R−x )

2 〈x〉
(
〈x〉
〈
R±x2
〉) (7)

Proof. See Appendix 1.
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III. INFERRING REACTION ORDER FOR MASS-ACTION KINETICS IN 2-COMPONENT SYSTEMS

In this section, we use the second invariant (Equation 3) to identify the correct reaction order
n for a mass-action kinetics model, given the stationary probability distribution generated by
the model. We show that this method works across parameter space, that it rejects the incorrect
interaction in the two-component model, and that even with a small number of samples from
the stationary distribution, we can obtain the invariant with high confidence.

A. Model Structure
In this section, we consider a two component system with mass action kinetics. The variable

x1 is governed by a Poisson process; the variable x2 is made with a birth rate that depends on
x1. In our mass-action kinetics model, x2 has birth rate λ2xn1 . Both death rates are exponential.
The reactions in the model are as follows:

x1 x1 + 1 x2 x2 + 1

x1 x1 − 1 x2 x2 − 1

λ1 λ2xn1

β1x1 β2x2

(8)

where, with notation as in Section I, R+
x1

= λ1, R−x1 = β1x1, R+
x2

= λ2x
n
1 , R−x2 = β2x2. By

rescaling the other parameters (dividing through by β2), we can set β2 = 1.

B. Invariant to infer n
Given the joint distribution of x1, x2, we want to infer the parameter n (reaction order), from

the data. Our strategy is to substitute P(x1, x2), the joint distribution of (x1, x2), into the invariant
from Equation 3, and evaluate the invariant at different values of n to identify the true value
used to generate the data, which we denote n?.

First, we specialize Equation 3 by substituting in the birth and death fluxes of x1 and x2 into
the equation. We note that si, the average step size of xi, is 1 because |δ| = 1 for all reactions.

Applying Equation 3 to x2, we get the following equation

Var (x2)
〈x2〉2

=
1

〈x2〉
+

Cov (x2, xn1 )
〈x2〉 〈xn1 〉

Let ηxy :=
Cov(x,y)
〈x〉〈y〉 , then we can rewrite the equation as

ηx2,x2 =
1

〈x2〉
+ ηx2,xn1 (9)

Note that by linearity of expectation, the λ2 coefficients cancel. This invariant can be computed
from an observed joint distribution for various values of n. We can then define a relative error
term comparing the two sides of the invariant equation, and compute the error for various values
of n. Assuming the observed joint distribution is generated from a process of the form in Equation
8, this invariant holds for the true value of n. Hence, the error should be zero at the true value
of n.

We define the error term as

Err2(n) = 2

1
〈x2〉 + ηx2,xn1 − ηx2,x2
ηx2,x2 +

1
〈x2〉 + ηx2,xn1

(10)
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If n∗ is the value of n that generated the joint stationary distribution of x1 and x2 via the process
in Equation 8, then by the process used to obtain the invariant, it is guaranteed that Err2(n∗) = 0.

Fig. 1: Err2(n) Plotted across different n∗, β1, 〈x1〉, and 〈x2〉

In Figure 1, we plot Err2(n) calculated across different stationary distributions generated
from different parameter values. From Panel A, Figure 1, where we are keeping 〈x1〉, 〈x2〉, and
β1 fixed, we see that our method works when our data is generated for different n∗. From Panel
B, where we are keeping 〈x1〉 and 〈x2〉 fixed, we see that the Err2(n) line becomes more steep
as the value of β1 decreases. Intuitively, this can be explained by the fact that the lifetime of
x1 is longer when β1 is low, meaning that x2 has more time to react to changes in x1. From
Panel C, where we are keeping 〈x1〉 and β1 fixed, we see that the Err2(n) line becomes more
steep as the mean of x2 increases. This is expected, since when we increase x2, 1

〈x2〉 gets smaller
and a larger portion of variability is explained by the covariance term. Finally, in Panel D, we
keep 〈x2〉 and β1 fixed and plot changes in Err2(n) from 〈x1〉. We see that lower 〈x1〉 results
in a steeper slope because x1 follows a Possion distribution and the variability of x1 (ηx1,x1)
increases as mean of x1 decreases

C. Comments About n = 0

When n = 0, both x1 and x2 follows independent Poisson processes. We know that
1
〈x2〉 =

Var(x2)
〈x2〉2

is satisfied. However, since x2 and x1 are generally independent in this system,
the covariance between x2 and xn1 should be 0 for all n theoretically. Even though numerically
this could fluctuate a little bit, we would get a line of 0 or very close to 0 (See Figure 2). This
is a special case for non-negative integer n.
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Fig. 2: When n = 0 in the 2 component Mass Action Model, x1 and x2 are independent

D. Rejecting x2 → x1

We also want to identify the true pair of interactions in this system, that is to tell whether
x1 regulates x2 or x2 regulates x1. In this case, if our model is x1 regulates x2 and we test on
x2 regulates x1, we get a clear intersection at n = 0 (See Figure 3). This is true since indeed
x2 follows a Poisson process and x2 is indeed made by rate λ1x01. It is not shallow since the
covariance between xn1 and x2 is not zero in general and even you raise x1 to some power, the
covariance term is still significant.

Fig. 3: Assume x2 regulates x1 in the model

E. Sampling
In the previous figures, we computed the error term from Equation 10 using the stationary

distribution. However, in practical settings, the true stationary distribution is generally unknown:
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rather, experimental data generally corresponds to sampling from an unknown, underlying
stationary distribution. Using inverse sampling, we sampled from the stationary distribution (we
set N , the number of samples, to be 100, 500, 1000, and 5000). We performed this sampling
1000 times for each N . For each sample, we computed the estimated error term across n; that
is, we substituted the sample distribution into Equation 10 and computed it across n. For each
N , we performed this process 1000 times to get 1000 estimates of the error term, and then we
plotted the mean and 95% credible interval of these estimates for each N in Figure 4. As shown
in the figure, the mean of the invariant error passes through the true value of n at 0, and for the
number of samples N ≥ 500, the credible interval is quite narrow around the true value of n.
In a biological setting, N = 500 corresponds to single-cell measurements of two molecules in
500 cells, which is very plausible using fluorescence microscopy or single-cell RNA sequencing,
depending on the molecules of interest.

Fig. 4: 95% credible interval from different sample sizes

IV. MA 3 COMPONENTS

A. Model Structure

In order to generalize this method into large networks, it is natural to ask whether it works for
a chain of components in which each component regulates the birth rate of the next component
by mass action kinetics. As a first response to this question, we consider a three-component
system where the birth rate of x2 depends on x1 and the birth rate of x3 depends on x2. The
reactions in the system are as follows:

x1 x1 + 1 x2 x2 + 1 x3 x3 + 1

x1 x1 − 1 x2 x2 − 1 x3 x3 − 1

λ1 λ2xm1 λ3xn2

β1x1 β2x2 β3x3

(11)

B. 2nd invariant identifies spurious interactions

In the three-component case, there are two sorts of spurious interactions we might expect
to identify using the invariant approach: x3 influences x2 or x2 influences x1 (interactions
that reverse a correct interaction in the network) and x1 influences the birth rate of x3 (the
“composition” of two interactions .
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In the two-component model in Section III, the second invariant rejects the “reverse” spurious
interaction. In particular, the variance invariant suggests that x1 is made with order x02 (i.e. at a
constant rate), which is consistent with the birth rate of x1. Intuitively, this occurs because the
birth rate of x1 is constant, and the invariant is insensitive to λ1; Equation 3 simply witnesses
that the birth rate of x1 is constant. However, when we introduce a third component into the
system, the birth rate of x2 is no longer constant, so there might be a nonzero value of k for
which R+

x2
= λxk3 satisfies Equation 3.

As for the composition error, it is more clear how the variance invariant might identify a
spurious interaction: if x2 has a much faster timescale than x1, then it will reflect the amount of
x1 very faithfully; as such, it might be hard to distinguish without temporal information whether
x3 is made by x1 or x2. We are not so worried about this scenario but if there is a difference
between x1 and x2 and we still get a 0 relative error from x1 and x3, we want to identify the
correct pair.

We thought that these two problems might be ameliorated if we obtained another invariant
from a higher moment of xi, using the same approach described in the introduction. In particular,
for a correct interaction, both Equation 3 and the new invariant must be zero, but for an incorrect
interaction, they might not be zero at the same n, which would allow us to distinguish correct
from incorrect interactions. This motivates the introduction of the skewness invariant.

C. 3rd Invariant

From Equation 7, we get the following invariant on x2, x3 using the 3-component system.

Cov (x3, xn2 )
〈x3〉 〈xn2 〉

− Var (x3)
〈x3〉2

=
Cov (x3, xn2 ) + Cov (x3, xn2 )

2 〈x3〉2 〈xn2 〉
+

Var (x3)− Cov (x23, x3)
2 〈x3〉3

(12)

D. Figure, Talk About Results

The time scale β2 relative to the other time scales is very important in impacting the behavior
of the method. We also need to be careful that even the intersections are at the same point,
we can only conclude that the two components seems like a mass action up to ”third moment”.
Theoretically one can use higher moments (induction formula in appendix) to examine this result.
However each higher moment is ”shallower” and less resistant towards the measurement error.
Also, since we are only using pairwise relation here, this result could easily generalize to any
chain of non-feedback mass action kinetics by induction. We need to be more careful if there
exists more complex network topology in the system.

V. HILL 2 COMPONENTS

In this section, we study the properties of these invariants for a higher-dimensional problem:
inferring the parameters of Hill-type rate functions, that is, functions of the form

R+
x2

= λ2
xn1

xn1 +Kn
(13)

Hill equations arise from applying the quantitative steady-state approximation to a model of
enzymatic reactions; they are standard in biochemistry for modelling protein interaction kinetics.
The parameter n is the Hill coefficient, a measure of cooperativity between subunits in complex
formation; the parameter K represents the dissociation constant
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A. Model - Show 2nd and 3rd Invariants

In this section, we use a similar model construction to Section III but change the birth rate
of x2 to be λ2

xn1
xn1+K

n . The reaction in the models are as follows:

x1 x1 + 1 x2 x2 + 1

x1 x1 − 1 x2 x2 − 1

λ1
λ2

xn1
xn1 +Kn

β1x1 β2x2

(14)

As before, we will rescale the invariants so that they do not depend on λ1. This problem is
higher-dimensional: rather than inferring the reaction order n, as in the mass-action case, we try
to infer both n and K from the joint distribution of x1 and x2.

Applying Equation 3, we get the following equation.

1

〈x2〉
=

Var (x2)
〈x2〉2

−
Cov

(
x2,

xn1
xn1+K

n

)
〈x2〉

〈
xn1

xn1+K
n

〉 (15)

As in Section III, we define an error term based on the invariant:

Err2(n,K) = 2

1
〈x2〉 + ηx2,R+

x2
− ηx2,x2

ηx2,x2 +
1
〈x2〉 + ηx2,R+

x2

(16)

where scalars λ2 and β2 cancels out using the stationary condition λ2

〈
xn1

xn1+K
n

〉
= β2 〈x2〉.

However, since the parameter space now has two dimensions, we would get a 1-dimensional
zero stripe just based on Err2.

Fig. 5: Err2 from different parameter settings
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As we iterate through different settings, we can see in the plot that if we want a clear stripe
for the second invariant, we want 〈x1〉 to be smaller than K, x1 to be slower than x2 and
〈x2〉 to be large. These follow from the variability result of the second invariant. We provide a
more detailed explanation on this in Fc section and linear approximation section. One important
observation is that mean of x1 is very important in determining how confident we are to get the
stripe of zeros. When 〈x1〉 > K, the stripe is not even stable anymore as we see in the third
row of the plot.

In order to further determine the (n,K) pair, we use the skewness invariant again. Applying
Equation 7, we get the following:

Cov
(
x2,

xn1
xn1+K

n

)
〈x2〉

〈
xn1

xn1+K
n

〉 − Var (x2)
〈x2〉2

=
Cov

(
x2,

xn1
xn1+K

n

)
+ Cov

(
x2,

xn1
xn1+K

n

)
2 〈x2〉2

〈
xn1

xn1+K
n

〉 +
Var (x2)− Cov (x22, x2)

2 〈x2〉3

(17)
Now define

lhs : =
Cov

(
x2,

xn1
xn1+K

n

)
〈x2〉

〈
xn1

xn1+K
n

〉 +
Cov (x22, x2)

2 〈x2〉3

rhs : =
Cov

(
x2,

xn1
xn1+K

n

)
+ Cov

(
x2,

xn1
xn1+K

n

)
2 〈x2〉2

〈
xn1

xn1+K
n

〉 +
Var (x2)
2 〈x2〉3

+
Var (x2)
〈x2〉2

(18)

and

Err3(n,K) =
2(lhs− rhs)
lhs+ rhs

(19)

This gives another equation on (n,K). The skewness behavior follows the similar pattern as the
variance invariant in Figure 9 (See appendix). If we set Err2 and Err3 both to be zero, we would
have two equations and two unknowns. This provides a theoretical solution to infer n and K.
The following plot is when we plot the zero stripes of both invariants:

Fig. 6: Minimum Err2 and Err3 values from invariants
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As we can see, the two lines intersect at the true value of (n,K). This is expected. However,
the two intersections are not transversal. This becomes a problem when we have sampling error
or measurement error in our data. The following plot is when we sample 1000 points from our
good distribution and repeat 30 times:

Fig. 7: Minimum Err2 and Err3 values from invariants in 30 times of sampling

Notice that from multiple sampling, we get an intersection area where intersections might
happen due to sampling error. If we plot all the (n,K) pairs that passes through all of the
intersections from our 30 trials and re-scale them (λ2 might be different in these cases) so that
they all pass through the point (〈y〉 , 〈y〉n

〈y〉n+Kn ) for true value of (n,K), we notice that they are
very similar in the regime of y distribution (Figure 8). This indicates the ”degenerate” case where
we are not so certain about the exact parameters but we can still get the shape of Hill function
in the regime where y is distributed. This is an identifiablility problem of the Hill function rather
than the vulnerablity of our method.

Fig. 8: Rescaled Hill funcions in intersection regions



11

B. Introduce Fc

In order to better understand how different settings change our result, we introduce a new
statistics Fc by

Fc :=
ηx2R+

x2

1
〈x2〉 + ηx2,R+

x2

(20)

Remember that 1
〈x2〉 is the intrinsic noise of x2 and ηx2,R+

x2
is the extrinsic noise of x2 (caused

by x1) and the sum is the variability of x2. So Fc denotes the portion of variability of x2
explained by extrinsic noise. In Figure 5, we printed the Fc value for each subplot. In principle,
as long as K larger or approximately x2, a larger Fc would give a better intersection since it
forces 〈x2〉 to be small and covariance to be large, we are then more confident on both variance
and skewness curves. This statistics is helpful for us since in appendix we can see Fc has a
monotonic relationship with Bhattacharyya distance and this allows us to get insight on how
good our method works just based on the given distributions.

C. Linear Noise Approximation and Intuition

Lemma V.1. For the model in Equation 14, by applying the linear noise approximation to the
system, we obtain the following result on variability of x2:

ηx2,x2 =
1

〈x2〉
+

β1
β1 + β2

(
nKn

Kn + 〈x1〉n
)2

ηx1,x1 (21)

Proof. See Appendix 1.

The linear noise approximation provides a good way to think about extrinsic noise across
different parameter settings. In our model, ηx1,x1 =

1
〈x1〉 as x1 follows a Poisson process. Notice

that the term nKn

Kn+〈x1〉n looks like a reflected version of hill function around half-max. So n is
the asymptotic horizontal line when 〈x1〉 → 0 and K is the half-max. In order to have large Fc,
we prefer a smaller 〈x1〉, larger N , larger K and relative large β1 compared to β2. We also want
the 〈x2〉 to be large for intrinsic noise to be small.

D. Discussion

As we see in linear noise approximation section and plot of Error2/Error3 in different setting
(see Appendix), larger n and K are helpful for us to determine the variance and skewness
invariant stripe. However, to get the correct (n,K) pair from the distribution, we also want the
intersection to be as transversal as possible. This is related to the shape of the hill function. In
order to use the variability of x1 to capture the dynamics of x2, we want the birth rate of x2 to
fluctuate as much as possible. Since the hill function has a Sigmoid behavior, we want x1 to be
able to fluctuate around the half-max of the hill function, that is K. So the best scenario that
we can confidently determine both n and K is when 〈x1〉 is slightly smaller than K and large
n. When K is much larger than 〈x1〉, we can usually determine the right n value but it is hard
to tell what K is since the intersection happens at the almost vertical part of the stripe. When
K is small, in general the system is not very stable and we need to take large sample sizes in
order to determine K.
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VI. FUTURE QUESTIONS

1) Compare this approach to standard parameter fitting techniques that people use (e.g.
approximate Bayesian computation). In particular, look at the distribution of estimates
you get for n, (n,K), and for the rate parameters (e.g. maybe you get a wide range of n
but the time scales are very different and you can witness that somehow?)

2) What happens if the system is not at stationarity? First, is there a way to witness that from
static data? Second, can we account for that in the invariant? (e.g. estimate the value of
d
dt

Var(xi) and keep it in the invariant.)
3) Persistent measurement error of x (e.g. undercounting by 3 molecules) or probabilistic

measurement of x (e.g. measure x 70% of the time).
4) |δ| 6= 1. We’d need to study the third invariant more carefully to work on this case—we’ve

only really worked with the third invariant when |δ| = 1.
5) Alternate kinetic schemes. In the two component case, it would be really nice to do

something like R+
x2

= λ2x
m
1 x

n
2 (auto-catalysis?), R+

x1
= λ1x

m
2 (classic feedback).

6) 5 component system with a mix of interactions that we expect to recover and interactions
that will be more complicated (e.g. timescale spearation in the “wrong” direction). Maybe
we could expand more on timescales in the preceding sections too: take the limit as β1
gets enormous

7) Go through some of the papers we have in the google drive about “biological network
motifs”, make a larger list of network motifs that are interesting to study. Start with a few
simple examples (phosphorylation cascades, operons, etc.).

VII. CONCLUSION

In summation, invariants of the stationary distribution for stochastic processes in networks not
only offer the potential for rigorous rejection of models, but also for parameter estimation. These
methods show great promise for recovering exact parameter values in mass-action kinetics, and
for recovering rate functions, for rate functions with underlying identifiability issues.

VIII. APPENDIX

A. Higher Moments
In general, for birth-death processes of x2 with all step sizes one and simple dependence birth

rate λ2f(x1) and death rate β2x2, we have

d
〈
xk
〉

dt
= β2

〈
(x2 − 1)kx2

〉
− β2

〈
xk+1
2

〉
+ λ2

〈
(x2 + 1)kf(x1)

〉
− λ2

〈
xk2f(x1)

〉
(22)

for any moments k ∈ Z+.

B. Skewness Invariant
Here, we prove Lemma II.1.

Proof. Next, we compute the time derivative of the the following quantity using a similar
approach to the derivation of variance equation [1]. First, we rewrite skewness as:〈

(x− 〈x〉)3
〉
=
〈
x3 − 3x2 〈x〉+ 3x 〈x〉2 − 〈x〉3

〉
=
〈
x3
〉
− 3 〈x〉

(〈
x2
〉
− 〈x〉2

)
− 〈x〉3

=
〈
x3
〉
− 3 〈x〉 (Var (x))− 〈x〉3
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Next, we differentiate this expression:
d

dt

〈
(x− 〈x〉)3

〉
=

d

dt

〈
x3
〉
− 3

(
d 〈x〉
dt

Var (x) + 〈x〉 dVar (x)
dt

)
− 3 〈x〉2 d 〈x〉

dt

Now, we begin to simplify each term. For one reaction, d
dt
〈x3〉 can be expressed as:

d 〈x3〉
dt

=
∑
x

x3
dP (x, t)

dt

=
∑
x

x3(−r(x))P (x) +
∑
x

x3r(x− δ)P (x− δ)

=
∑
x

(−x3)r(x)P (x) +
∑
x

(
x3 + 3x2δ + 3xδ2 + δ3

)
r(x)P (x)

=
〈
3x2δr(x)

〉
+
〈
3xδ2r(x)

〉
+
〈
δ3r(x)

〉
.

For multiple reactions, this generalizes in a straightforward manner (switching summations) to
d 〈x3〉
dt

=
∑
k

〈
3x2δkrk(x)

〉
+
〈
3xδ2krk(x)

〉
+
〈
δ3krk(x)

〉
(23)

=
〈
3x2

(
R+
x − R−x

)〉
+

〈
3x
∑
k

|δk||δk|rk(x)

〉
+

〈∑
k

δ3krk(x)

〉
(24)

The middle two terms of Equation 23 can be expressed as

−3
(
d 〈x〉
dt

Var (x) + 〈x〉 dVar (x)
dt

)
= −3

〈
R+
x − R−x

〉 〈
x2
〉
+ 3

〈
R+
x − R−x

〉
〈x〉2 − 3 〈x〉 dVar (x)

dt
.

The last term of Equation 23 can be expressed as:

− d

dt
〈x〉3 = −3 〈x〉2 d 〈x〉

dt
= −3

〈
R+
x − R−x

〉
〈x〉2 .

Combining these terms, we get

d

dt

〈
(x− 〈x〉)3

〉
=
〈
3x2

(
R+
x − R−x

)〉
+

〈
3x
∑
k

|δk||δk|rk(x)

〉
+

〈∑
k

δ3krk(x)

〉

− 3
〈
R+
x − R−x

〉 〈
x2
〉
+ 3

〈
R+
x − R−x

〉
〈x〉2 − 3 〈x〉 dVar (x)

dt
− 3

〈
R+
x − R−x

〉
〈x〉2

= 3
〈
x2
(
R+
x − R−x

)〉
− 3

〈
R+
x − R−x

〉 〈
x2
〉

+

〈
3x
∑
k

|δk||δk|rk(x)

〉
+

〈∑
k

δ3krk(x)

〉

− 3 〈x〉 dVar (x)
dt

+ 3
〈
R+
x − R−x

〉
〈x〉2 − 3

〈
R+
x − R−x

〉
〈x〉2

= 3Cov
(
x2,
(
R+
x − R−x

))
+ 3

〈
x
∑
k

|δk||δk|rk(x)

〉

+

〈∑
k

δ3krk(x)

〉
− 3 〈x〉 dVar (x)

dt
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Recall that

dVar (x)
dt

= 2Cov
(
x, R+

x − R−x
)
+

〈∑
k

|δk||δk|rk(x)

〉
.

Substituting this into the previous equation, we obtain

d

dt

〈
(x− 〈x〉)3

〉
= 3Cov

(
x2,
(
R+
x − R−x

))
+

〈∑
k

δ3krk(x)

〉

+ 3

〈
x
∑
k

|δk||δk|rk(x)

〉
− 3 〈x〉

(
2Cov

(
x, R+

x − R−x
)
+

〈∑
k

|δk||δk|rk(x)

〉)
(25)

An alternate form of this equation is given by

d

dt

〈
(x− 〈x〉)3

〉
= 3Cov

(
x2,
(
R+
x − R−x

))
+

〈∑
k

δ3krk(x)

〉
− 6 〈x〉Cov

(
x, R+

x − R−x
)

+ 3Cov

(
x,
∑
k

δ2krk(x)

)
(26)

This is, in fact, the expression in Lemma II.1.

Next, we prove Corollaries II.1 and II.2.

Proof. At stationarity, we can set Equation 26 equal to 0 (Corollary II.1).

0 = 3Cov
(
x2, R+

x − R−x
)
+

〈∑
k

δ3krk(x)

〉

− 6 〈x〉Cov
(
x, R+

x − R−x
)
+ 3Cov

(
x,
∑
k

δ2krk(x)

)
If |δk| = 1 ∀k, then this simplifies to

0 = 3Cov
(
x2, R+

x − R−x
)
+

〈∑
k

δkrk(x)

〉

− 6 〈x〉Cov
(
x, R+

x − R−x
)
+ 3Cov

(
x,
∑
k

|δk|rk(x)

)
= Cov

(
x2, R+

x − R−x
)
− 2 〈x〉Cov

(
x, R+

x − R−x
)
+ Cov

(
x, R+

x + R−x
)

(We used the fact that 〈
∑

k δkrk(x)〉 = 〈 R+
x − R−x 〉 =

d〈x〉
dt

= 0 at stationarity). We can rearrange
this and divide by 〈x〉

〈
R±x2
〉

to obtain the equation given in Corollary II.2:

Cov (x, R+
x − R−x )

〈x〉
〈
R±x2
〉 =

Cov (x2, R+
x − R−x ) + Cov (x, R+

x + R−x )

2 〈x〉
(
〈x〉
〈
R±x2
〉) (27)
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Expanding this, we get

Cov (x, R+
x )

〈x〉
〈
R±x2
〉 − Cov (x, R−x )

〈x〉
〈
R±x2
〉 (28)

=
Cov (x2, R+

x )

2 〈x〉
(
〈x〉
〈
R±x2
〉) − Cov (x2, R−x )

2 〈x〉
(
〈x〉
〈
R±x2
〉) + Cov (x, R+

x )

2 〈x〉
(
〈x〉
〈
R±x2
〉) + Cov (x, R−x )

2 〈x〉
(
〈x〉
〈
R±x2
〉) (29)

We can also rearrange so that each term has a positive coefficient:

Cov (x, R+
x )

〈x〉
〈
R±x2
〉 +

Cov (x2, R−x )
2 〈x〉

(
〈x〉
〈
R±x2
〉) =

Cov (x, R−x )
〈x〉
〈
R±x2
〉 +

Cov (x2, R+
x )

2 〈x〉
(
〈x〉
〈
R±x2
〉)

+
Cov (x, R+

x )

2 〈x〉
(
〈x〉
〈
R±x2
〉) + Cov (x, R−x )

2 〈x〉
(
〈x〉
〈
R±x2
〉) (30)

C. Linear approximation calculation

In this section, we use the linear noise approximation to obtain expressions for ηx1,x1 , ηx1,x2 ,
and ηx1,x2 . In the 2 components hill function case, first, we compute the Jacobian matrix M for
the system. Hx1x1 = Hx2x2 = 1, since the death terms of each variable are linear with respect
to that variable, and the birth term of each variable is independent of itself. Hx1x2 is zero, since
the birth rate ( R+

x1
) and death rate ( R−x1) of x1 are independent of x2. The computation for

Hx2x1 is more involved:

Hx2x1 =

(
x1
R−x2

∂ R−x2
∂x1

− x1
R+
x2

∂ R+
x2

∂x1

)∣∣∣∣
x2=〈x2〉,x1=〈x1〉

(31)

= 0− 〈x1〉
λ1

〈x1〉n
〈x1〉n+Kn

λ1
nKn 〈x1〉n−1

(〈x1〉n +Kn)
2 (32)

= −nK
n 〈x1〉n (〈x1〉n +Kn)

〈x1〉n (〈x1〉n +Kn)
2 (33)

= − nKn

Kn + 〈x1〉n
(34)

Hence,

H =

[
1 0

− nKn

Kn+〈x1〉n 1

]
(35)

Recall that Mij =
Hij

τi
; that is, the entries of the ith row of M are the entries of the ith row of

H divided by the lifetime τi =
〈xi〉
〈 R−

xi〉
. For exponential death processes, the lifetime is simply

the inverse of the decay rate, so we multiply the ith row by βi Hence,

M =

[
β1 0

−β2 nKn

Kn+〈x1〉n β2

]
(36)
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We now solve for the diffusion terms: the diffusion matrix is symmetric, with entries expressed
in terms of the 〈sij〉. Since all reactions involve only one type of species, sij = 0 for i 6= j;
hence, the diffusion matrix is diagonal, with diagonal entries sii = 2

τi

〈sii〉
〈xi〉 . Thus,

D =

[
2β1
〈x1〉 0

0 2β2
〈x2〉

]
(37)

Now, we write the matrix equation[
β1 0

−β2 nKn

Kn+〈x1〉n β2

] [
ηx1,x1 ηx2,x1
ηx2,x1 ηx2,x2

]
+

[
ηx1,x1 ηx2,x1
ηx2,x1 ηx2,x2

] [
β1 0

−β2 nKn

Kn+〈x1〉n β2

]
=

[
2β1
〈x1〉 0

0 2β2
〈x2〉

]
This gives us three equations. For the diagonal equations, we divide through by 2βi to write

ηx2,x2 =
1

〈x2〉
+

nKn

Kn + 〈x1〉n
ηx2,x1

ηx1,x1 =
1

〈x1〉
For the off-diagonal equation, we obtain

(β2 + β1) ηx2,x1 − β2
nKn

Kn + 〈x1〉n
ηx1,x1 = 0 (38)

Solving for ηx2,x1 , we obtain

ηx2,x1 =

(
β2

β1 + β2

)
n

(
Kn

Kn + 〈x1〉n
)
ηx1,x1 (39)

Using the diagonal equations, we could rewrite this as

ηx2,x1 =

(
β2

β1 + β2

)(
Kn

Kn + 〈x1〉n
)

n

〈x1〉
(40)

Substitute in the previous equation, we get

ηx2,x2 =
1

〈x2〉
+

(
β2

β1 + β2

)(
nKn

Kn + 〈x1〉n
)2

1

〈x1〉
(41)

D. Linear noise approximation for Mass action
Similarly, for linear noise approximation in mass action case, we construct three matrices.

H =

[
1 0
−n 1

]
(42)

M =

[
β1 0
−β2n β2

]
(43)

D =

[
2β1
〈x1〉 0

0 2β2
〈x2〉

]
(44)
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This gives us three equations. For the diagonal equations, we divide through by 2βi to write

ηx2,x2 =
1

〈x2〉
+ nηx1,x2

ηx1x1 =
1

〈x1〉
For the off-diagonal equation, we obtain

(β1 + β2) η12 − β2nηx1x1 = 0 (45)

Solving for η12, we obtain

ηx1,x2 =

(
β2

β1 + β2

)
n2ηx1x1 (46)

Using the diagonal equations, we could rewrite this as

ηx1,x2 =

(
β2

β1 + β2

)
n2

〈x1〉
(47)

And substitute into previous equation, we get

ηx2,x2 =
1

〈x2〉
+

(
β2

β1 + β2

)
n2

〈x1〉
(48)

E. Error2 and Error3 Plots over different parameter settings
Like Figure 5, we can plot Err3 under different parameter settings. It follows a similar pattern

as we can see that when mean of x1 is small, β1 is small and mean of x2 large, we get a large
Fc and larger contrast between the third invariant line and the background, meaning we are more
confident for the line of Err3.

Fig. 9: Err3 from different parameter settings
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Previously we are fixing the true (n,K) pair and look at different parameters. Alternatively,
we can also fix all other parameters and change n,K. As we see in the following figure, as n
increases and K increases, we are more confident in the second invariant curve we get.

Fig. 10: Err2 from different (n,K) pairs

Similar story for the third invariant:

Fig. 11: Err3 from different (n,K) pairs

Since the intrinsic noise 1
〈x2〉 is usually much smaller than the extrinsic term, we find that
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change of 〈x2〉 does not affect the result very significantly. Thus, we could take a closer look
just at how β1 and 〈x1〉 affect our result. The following two plots shows how confident we are
in Err2 and Err3 under different β1 and 〈x1〉.

Fig. 12: Err2 from different β1 and 〈x1〉

Fig. 13: Err3 from different β1 and 〈x1〉
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F. 2 component Mass Action derivative

For the model in Section III, we can compute the numerical derivative under different settings.
The result is similar as we see in the panel of Figure 1. In order to get a large derivative, we
want 〈x2〉 to be large, 〈x1〉 to be small and β1 to be small.

Fig. 14: Derivatives of Err2 in Mass Action Case
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