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Abstract

The development of James-Stein theorem has been a ground breaking result in the field
of statistics. It allows people to obtain better estimators for a multivariate normal distribution
under a quadratic risk function. A lot of generalizations are made on James-Stein estimators. In
this paper, we present a new James-Stein type estimator on multivariate regression that shrinks
the dispersion bias we defined with asymptotic good properties. It is easy to implement with
an empirical Bayes nature. A frequentist view is given to show the inadmissibility of the
original Ordinary Least Square estimator when the number of variables goes to infinity. We
also provide a geometric view on this problem based on unit-sphere settings. The method can
be particularly useful under high dimensional models like estimating betas from a multivariate
regression in Capital Asset Pricing Model in finance. We present a numerical evidence from
synthetic data that simulates the real world stock market and see significant improvements
from the original estimator.

Acknowledgements

This work would not be possible without the support and input from my undergraduate
supervisor Alexander Shkolnik from Department of Statistics and Applied Probability, Uni-
versity of California, Santa Barbara. I want to thank my College of Creative Studies advisor
Karel Casteels for pushing me to finish this work as well as Maribel Bueuo for her guide during
my undergraduate study. I also want to thank the College for giving me this opportunity to do a
thesis and professors in Mathematics department as well as Statistics and Applied Probability
department for their constant inspiration. Last but not least, thank all my family and friends
for their love!

1



Contents
1 Background 3

2 Multivariate Regression Model Setup 3

3 Main Result 4
3.1 Dispersion Bias of the OLS Estimator . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Shrinkage and Asymptotic Estimations . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Algorithm 6

5 Proof 6
5.1 Why We Need to Shrink? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 How Much We Need to Shrink? . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 An Equivalent Transformation on Unit Sphere 9
6.1 New Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2 A New Metric of Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.4 Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5 Geometric View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Numerical Results 15
7.1 Background and Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 Future Works 17

9 Appendix 18
9.1 Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.2 Some Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.3 Some Other Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9.3.1 Kim, T. H., White, H. (2001). James-Stein-type estimators in large sam-
ples with application to the least absolute deviations estimator. . . . . . . . 19

9.3.2 Senda, M., Taniguchi, M. (2006). James–Stein estimators for time series
regression models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 References 21

2



1 Background
Charles Stein (1956) shows the inadmissibility of the usual estimator of a multivariate normal
known as the famous Stein’s Paradox. Willard James and Charles Stein (1961, republished in
1992) then developed the James-Stein estimator that always improves the usual estimator under
quadratic loss when p > 4 (number of variables). The topic of James-Stein type estimators then
become an active research area in statistics and decision theory. Lindley (1962) and Efron and
Moris (1973) further develops the idea with more structured algorithms including choosing the
positive part of James-Stein estimator and an Empirical Bayes perspective on the estimator. Berger
(1980, republished in 2013) gives a Generalized Bayes estimator to further generalize the result.
Stigler (1990) gives a frequentist proof on James-Stein estimators. More recent advancement on
this topic including Kim and White (2001) and Senda and Taniguchi (2006) which focuses on large
samples and time correlation respectively. In this paper, we are inspired by the idea of shrinkage
method in finance market (see Numerical Result section). We define a dispersion distance and
shrink our Ordinary Least Square estimator towards an arbitrary given vector to obtain an optimal
dispersion loss. The model is set up in a special multivariate regression setting and we provide
asymptotic optimality proof for this method.

2 Multivariate Regression Model Setup
We will focus on the following multivariate regression model. Let p ∈ N. Suppose we have a
linear model of form

Y = βx+ e

where Y ∈ Rp, X ∈ R are observed, β ∈ Rp is a p-dimensional constant vector that we want to
estimate and e ∈ Rp is a p-dimensional vector of random variables.

Given n observations of Y and X , consider the multiple linear regression problem with

Y = Xβ> + e

where Y is a n × p data matrix, X = (X1, ..., Xn)> ∈ Rn is a vector of p realizations of random
variable X , β ∈ Rp is a p-dimensional constant vector of our interest and e is a n× p matrix of n
realizations of random variables e.

Assumption 1. Var (X) = σ2
x <∞. E (X) = 0(in application, mean can always been normalized).

Assumption 2. {ei}i=1,...p are i.i.d random varianbles with E(ei) = 0 and Var (ei) = σ2
e <∞.

Assumption 3. Cov(X, ei) = 0 for i = 1, ..., p

Under Assumption 1-3, we can perform cross-sectional regression on each entry of β and this gives
our ordinary least square estimator β̂ with

β̂> = (X>X)−1X>Y
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Some properties of this estimator:

• E β̂ = β, that is, the estimator is unbiased.

• Var
(
β̂
)

= σ2
e

ns2x
, where s2x = 1

n

∑n
i=1(xi − x̄)2.

Moreover, the Ordinary Least Square (OLS) regression estimator is known as the Minimum Vari-
ance Unbiased Estimator (MVUE). That is, it has the minimum variance among the family of
unbiased estimators. These properties are easy to find in any regression/econometric literature. We
list these here since they would be helpful in section 3 and section 5. The estimator we proposed
in next section in a biased estimator and we argue that it has some properties that are superior than
the commonly used OLS estimator.

3 Main Result

3.1 Dispersion Bias of the OLS Estimator
The following defines a metric we called dispersion bias and states that the OLS estimator is biased
with high probability in terms of dispersion under a weak assumption 4.

Definition 1. Define the distance d2p(β) and mean µp(β) of p−dimensional vector β as

d2p(β) =
1

p

p∑
i=1

(
βi − µp(β)

µp(β)

)2

and µp(β) =
1

p

p∑
i=1

βi (1)

Assumption 4. d2p(β) <∞ and µp(β) <∞ as p ↑ ∞.

Definition 2. Define the distance d2(u, v) of two p−dimensional vectors u, v as

d2p(u, v) =
1

p

p∑
i=1

(
ui

µp(u)
− vi
µp(v)

)2

(2)

Let q = (1, ..., 1)> be the p−dimension vector of all ones. Notice from the previous definition, the
dispersion d2p(β) is equivalent as d2p(β, q).

Theorem 1 (Dispersion Bias). d2p(β, q) < d2p(β̂, q) with high probability in p.

3.2 Shrinkage and Asymptotic Estimations
The following shows how much the original estimator is biased in dispersion and gives an asymp-
totic estimate of the constant c for a convex combination family that corrects the dispersion bias.
Notice that in high dimensions (when p ↑ ∞), we have an almost sure convergence result for a
better estimator before we need an estimator for norm of original estimator β.
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Theorem 2 (Estimate).∣∣∣∣∣d2p(β̂, β)− 1

pµ2
p(β̂)

(
|β̂|2 − |β|2

)∣∣∣∣∣→ 0 almost surely as p ↑ ∞.

Theorem 3 (Optimal Shrinkage). Define

β̂c = c
β̂

µp(β̂)
+ (1− c) q

µp(q)
, for c ∈ [0, 1]

For

c′ =
d2p(β̂) + d2p(β)− d2p(β, β̂)

2d2p(β̂)

We have d2p(β, β̂c′) ≤ d2p(β, β̂c) for all c ∈ [0, 1].

Theorem 4 (Asymptotic Result). Combine the previous two results, define

c∗ =
d2p(β̂) + d2p(β)− 1

pµ2p(β̂)

(
|β̂|2 − |β|2

)
2d2p(β̂)

Consider the regime where the dimension p ↑ ∞, we have∣∣∣∣∣d2p(β, β̂c′)− d2p(β, β̂c∗)d2p(β, β̂c′)

∣∣∣∣∣→ 0 almost surely as p ↑ ∞.

Theorem 5 (Estimates). Notice that given dataset X,Y and derived estimator β̂, d2p(β) is not
accessible. We will use the following estimates for dispersion of β on unit plane: let

` = d2p(β̂)− Var
(
β̂
)

= d2p(β̂)− σ̂2
e

ns2x

In the regime where the dimension p ↑ ∞, σ̂2
e → σ2

e and ` converges to d2p(β) when n is large (This
might be off because we only have p ↑ ∞). We also have the relationship that |β| = pµ2

p(β)(1 +

d2p(β)) and µp(β)→ µp(β̂) almost surely.
Thus we can define our transform coefficient

τ =
d2p(β̂) + µ2

p(β̂)`− 1

pµ2p(β̂)

(
|β̂|2 − pµp(β̂)(1− µ2

p(β̂)`)
)

2d2p(β̂)

And

β̂τ = τ
β̂

µp(β̂)
+ (1− τ)

q

µp(q)

as our new estimator with improved dispersion bias on unit plane.
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4 Algorithm
The following summarizes how we should apply the previous theorems on real-world data sets
X and Y . Typically X is the data matrix (or vector) for independent variable that we observe
and Y is the data matrix for dependent variable of the result. We are interested in estimating the
coefficients β.

1. Get the observations of X and Y . Check the assumptions are satisfied or almost satisfied.

2. Perform Ordinary Least Square Regression with

β̂> = (X>X)−1XY

3. Find the estimate of d2p(β) on unit plane by

d2p(β̂)− Var
(
β̂
)

and denote it `.

4. Use ` and β̂ to calculate τ from

τ =
d2p(β̂) + µ2

p(β̂)`− 1

pµ2p(β̂)

(
|β̂|2 − pµp(β̂)(1− µ2

p(β̂)`)
)

2d2p(β̂)

5. Calculate β̂τ with

β̂τ = τ
β̂

µp(β̂)
+ (1− τ)

q

µp(q)

6. Rescale it to the original mean
β̂min = µp(β̂)β̂τ

as the new shrinkage estimator for β that minimizes the distance of β and our estimator as
defined in equation (2) in the regime where p ↑ ∞.

5 Proof

5.1 Why We Need to Shrink?
For e vector of all ones, we shall prove the two lemmas on the plane:

(i) d2p(β, q) < d2p(β̂, q) with high probability in p.

(ii) limp↑∞ d
2
p(β, β̂) = 1

pµ2p(β̂)
(|β̂|2 − |β|2)
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Proof. First we show that µp(β̂) → µp(β) almost surely as p ↑ ∞. This follows by Chandra
(1992) Theorem 6 of a version of strong law of large numbers under uniform integrability. A
weaker version of convergence in probability is easy to show since β̂ is an unbiased estimator for
β. When we are in the regime p ↑ ∞, the average is exactly the expectation. And a consequence
ofthe previous result is that we have ( 1

µp(β̂)
− 1

µp(β)
)2 converges to 0 as p ↑ ∞. Then

d2p(β, β̂) =
1

p

p∑
i=1

(
β̂i

µp(β̂)
− βi
µp(β)

)2

=
1

p

p∑
i=1

(
β̂i

µp(β̂)
− βi

µp(β̂)
+

βi

µp(β̂)
− βi
µp(β)

)2

=
1

p

p∑
i=1

( β̂i − βi
µp(β̂)

)2

+ β2
i

(
1

µp(β̂)
− 1

µp(β)

)2

+ 2βi

(
β̂i − βi
µp(β̂)

)(
1

µp(β̂)
− 1

µp(β)

)
(3)

The second and third term should goes to 0 as p ↑ ∞. What we left is

1

µ2
p(β̂)

1

p

p∑
i=1

(
β̂i − βi

)2
→ d2p(β, β̂)

in the regime where p ↑ ∞. Expand the term out,

1

µ2
p(β̂)

1

p

p∑
i=1

(
β̂i − βi

)2
=

1

µ2
p(β̂)

1

p

p∑
i=1

(
β̂i

2
+ β2

i − 2β̂iβi

)
Notice that in OLS regression, we have the following relation:

β̂i = βi +

∑n
j=1 xjeji∑n
j=1 x

2
j

Replace it in the equation, we get

1

µ2
p(β̂)

1

p

p∑
i=1

(
β̂i − βi

)2
=

1

µ2
p(β̂)

1

p

p∑
i=1

(
β̂i

2
+ β2

i − 2β̂iβi

)
=

1

µ2
p(β̂)

1

p

p∑
i=1

(
β̂i

2
+ β2

i − 2

(
βi +

∑n
j=1 xjeji∑n
j=1 x

2
j

)
βi

)

=
1

µ2
p(β̂)

1

p

p∑
i=1

(
β̂i

2
− β2

i − 2

∑n
j=1 xjeji∑n
j=1 x

2
j

βi

) (4)
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We shall show that the last term vanishes so that

1

µ2
p(β̂)

1

p

p∑
i=1

(
β̂i

2
− β2

i

)
a.s.−→ d2p(β, β̂)

On the other hand we have

1

pµ2
β̂

(|β̂|2 − |β|2) =
1

pµ2
β̂

p∑
i=1

β̂2
i −

1

pµ2
β̂

p∑
i=1

β2
i

=
1

pµ2
β̂

p∑
i=1

(
β̂i

2
− β2

i

) (5)

Notice that |β| = pµ2
p(β)(1 + d2p(β)) and |β̂| = pµ2

p(β̂)(1 + d2p(β̂)), we can also rewrite the term as

1

pµ2
β̂

(|β̂|2 − |β|2) =
1

pµ2
β̂

(
pµ2

p(β̂)(1 + d2p(β̂))− pµ2
p(β)(1 + d2p(β))

)
=

1

µ2
β̂

(
µ2
p(β̂)(1 + d2p(β̂))− µ2

p(β)(1 + d2p(β))
)

=
1

µ2
β̂

(
µ2
p(β̂)− µ2

p(β)
)

+
1

µ2
β̂

(
µ2
p(β̂)d2p(β̂)− µ2

p(β)d2p(β)
) (6)

With µp(β)
a.s.−→ µp(β), it is not hard to show that the left hand side converges to d2p(β̂)−d2p(β). The

first term disappears and µp(β)

µp(β̂)
goes to 1. With that said, since left hand side converges to d2p(β, β̂)

almost surely and is non-negative by definition, we know d2p(β̂) > d2p(β) with high probability.
These previous lemmas show that the OLS estimator is likely to be over-dispersed in this setting
and gives an estimate for the dispersion bias between β and β̂.

5.2 How Much We Need to Shrink?
In the next sections we shall show the following:

(i) For c =
d2p(β̂)+d

2
p(β)−d2p(β,β̂)
2d2p(β̂)

, the convex combination of the unit-mean estimator gives the

smallest dispersion among the family of estimators for c ∈ [0, 1].

(ii) d2p(β̂)− σ̂2
e

ns2x
gives a good estimator of d2p(β) on unit plane.

The first lemma essentially provides the extent that we need to adjust our OLS estimator in order
to achieve optimal dispersion bias. And the estimate from the second lemma as well as previous
result provide us a practical quantity to perform the optimization.
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Proof. The first lemma is from taking derivative with respect to c of d2p(β, β̂c) and setting it to
zero. The calculation here is rather long and tedious, but the idea is to find a local minimum of the
form by taking c as a variable. From the previous result, it is also easy to see that the result we get
0 < c < 1 with high probability.
The second follows from an idea in Shalizi (2015) where we see that

Var
(
β̂
)

= Var
(
β +

1
n

∑n
i=1(xi − x̄)ei

s2x

)
= Var

( 1
n

∑n
i=1(xi − x̄)ei

s2x

)
=

1
n2

∑n
i=1(xi − x̄)2Var (ei)

(s2x)
2

=
σ2
e

ns2x

(7)

Essentially the major difference between variance and dispersion on unit mean plane is that known
constant vector has 0 variance but a positive dispersion. From Assumption 1, ns2x =

∑n
i=1 x

2.
Notice when p ↑ ∞, the sample variance of e also converges to σ2

e almost surely. Notice that
µ2
p(β̂)

(
Var (β)− σ̂2

e

ns2x

)
is an unbiased estimator of d2p(β) and it is accessible from the data and

should be reasonablely accurate when n is not very small (n > 10).

6 An Equivalent Transformation on Unit Sphere
Notice that we estimate the norm of β at the last step of our transformation. Consider that if we
know the norm of β or estimate of norm at the first place, we could normalize the problem so that β
lies on a unit-sphere and this provides useful visualization of the approach that we are taken as well
as another justification of the transformation. This is an equivalent approach as before as we can
see in appendix. When the norm of β is accurate, the result provides an almost sure convergence
when dimension is high.

6.1 New Model
Now let’s consider a slightly modified model. Let p ∈ N. Suppose we have a linear model of form

Y = β∗x+ e (6.1.0)

where Y ∈ Rp, x ∈ R are observed, β∗ ∈ Rp is a constant vector that we want to estimate and
e ∈ Rp is a p-dimensional vector of random variables.
Given n observations of Y and x, consider the multiple linear regression problem with

Y = X∗(β∗)> + e (6.1.1)
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where Y is a n × p data matrix, X∗ = (X∗1 , ..., X
∗
n)> ∈ Rn is random variable with mean 0,

β∗ ∈ Rp is a p-dimensional constant row vector of our interest and e is a n × p matrix of random
variables. Similarly We assume that the entries of e are mutually independent and E(eij) = 0 and
Var (eij) = σ2

e for all i, j. Suppose that Var (X∗i ) = σ2 <∞ and we can estimate norm of β∗, then
we can write the model equivalently as

Y = (X∗|β∗|)(β∗)>

|β∗|
+ e (6.1.2)

Now let β = β∗

|β∗| and X = (X1, ..., Xn)> = |β∗|X∗. We can re-write equation 6.1.2 as

Y = Xβ> + e (6.1.3)

By construction, we have |β| = 1. And Var (X) = |β∗|2Var (X∗i ). From the diffuse vector
property, |β∗|2 has order p. So we can write Var (X) = pσ2 for some finite σ2. Furthermore, we
assume that Cov(Xk, eij) = 0 for all k, i, j for exogeneity.
We perform cross-sectional regression on each of the p β−values. We get our Ordinary Least
Square estimator

β̂> = (X>X)−1X>Y (6.1.4)

Plug in Y with equation 6.1.3,

β̂> = (X>X)−1X>(Xβ> + e) (6.1.5)

Simplify, we get
β̂> = β> + (X>X)−1X>e (6.1.6)

6.2 A New Metric of Cosine Similarity
We will define the cosine similarity as a new metric we use on the unit-sphere problem. Let
q = 1√

p
(1, ..., 1)> ∈ Rp, that is, a p−dimensional row vector of all ones multiply by a factor

of order 1√
p
. Define γxy = cos θxy, where cos θxy denotes the cosine value of angle between

p−dimensional vectors x and y. Notice that cos θxy = x·y
|x||y| for any p−dimensional vector x and

y where |x| and |y| denotes the euclidean norm of vectors x and y. Equivalently, we can say
γxy = x·y

|x||y| = xy>

|x||y| .
By construction in preliminaries, from ordinary least square regression we have

β̂> = β> + (X>X)−1X>e (6.2.0)

We assume that |β| = 1 and Var(X) = pσ2. We will show the following two lemmas hold:

1. γβ̂q = 1

|β̂|γβq + δp where δp → 0 as p→∞.

2. |β̂| > 1 with high probability.
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Proof. (i) We multiply q from both sides of equation (6.2.0), since matrix multiplication is asso-
ciative, we get

β̂>q = β>q + (X>X)−1X>eq (6.2.1)

Since |β| = 1 and |q| = 1, β>q = γβq and β̂>q = γβ̂q|β̂|. Plug in we get

γβ̂q|β̂| = γβq + (X>X)−1X>eq (6.2.2)

|β̂| > 0 since β̂ is not zero vector (we assume dispersion is non-zero, otherwise the problem is
trivial). Divide |β̂| from both sides,

γβ̂q =
1

|β̂|
γβq +

1

|β̂|
(X>X)−1X>eq (6.2.3)

Now we define δp = 1

|β̂|(X
>X)−1X>eq and show that it goes to 0 as p → ∞. Since X>X ≈

nVar(X) = npσ2,

δp =
1

|β̂|σ2
(
1

p
X>eq) (6.2.4)

As we will see in lemma 2, |β̂| goes to some constant that does not depend on p as p→∞. Essen-
tially, we want to show 1

p
X>eq vanishes. If we multiply 1√

(p)
in q into X>, X> will have finite

variance. Let X ′ = 1√
p
X = (x′1, ..., x

′
n)> with finite variance. And e has entries {eij}, i = 1, ..., n,

j = 1, ..., p. We can write the product explicitly. Consider M = 1
p
eq, jth entry Mj of this vector is

given by 1
p

∑p
i=1 eji. Since eij are all independent with mean 0, by law of large numbers, Mj → 0

as p → ∞. And X ′M =
∑n

j=1 x
′
jMj . Since (x′1, ..., x

′
n) = 1√

p
X> has finite variance and are

independent from Mj , a finite 0 linear combination of {xi}′s must be zero. Thus, 1

|β̂|σ2
(1
p
X>eq)

vanishes as p→∞

In fact, this is a special case when q = β as we will prove in lemma 3. (Lemma 3 states that
γβ̂β = 1

|β̂| + δp with δp vanishes as p→∞).

Proof. (ii) We want to show |β̂| > 1 with high probability especially when p → ∞. Again we
start from equation (6.2.0).

β̂> = β> + (X>X)−1X>e (6.2.0)

Multiply β̂ from both sides,

|β̂|2 = (β + (X>X)−1X>e)β̂ (6.2.5)

Since β̂ = β + e>X(X>X)−1, (here (X>X)−1 is a 1 × 1 number, its transpose is itself). We
multiply the terms out,

|β̂|2 = (β> + (X>X)−1X>e)(β + e>X(X>X)−1) = |β|2 + A+B + C (6.2.6)

11



whereA = β>e>X(X>X)−1,B = (X>X)−1X>eβ andC = (X>X)−1X>ee>X(X>X)−1.
Notice that

C =
X>ee>X

(X>X)2
=

|e>X|2

|X|4
> 0 (6.2.7)

First we show that C does not vanish. Notice that we have |X|2 = X>X ≈ npσ2. Thus,
|X|4 ≈ n2p2σ4. e>X gives a p× 1 vector with ith entry (e>X)i. Notice (e>X)i =

∑n
j=1 ejiXj .

Then we have

C =
|e>X|2

|X|4
=

1

n2σ4p
(
1

p

p∑
i=1

(e>X)2i ) (6.2.8)

As p→∞, (e>X)i are random variables with finite moments, we can also show that (e>X)i are
uncorrelated identical distributions, by law of large numbers, this converges to E((e>X)2i ). By
construction since all eij andXi are uncorrelated, mean 0, the expected value goes to nVar (X) Var (e) ≈
n2pσ2σ2

e . Thus, C ≈ σ2
e

σ2 is finite and does not vanish.
Notice that by construction |β|2 = |β| = 1. We will now show A,B vanishes as p → ∞. In fact,
A = B> and since they are both just numbers, we will only show B goes to 0. We can simplify B
as:

(X>X)−1X>eβ =
1

pσ2
X>eβ (6.2.9)

This term vanishes by Komogorov law of large numbers (Chandra 1992).

6.3 Transformation

A similar transformation is defined by rotation on unit-sphere. Define βt =
β̂

|β̂|
+tq

| β̂
|β̂|

+tq|
where t ∈

[0,∞). That is, a t−parametrized vector on unit sphere that lies in the plane of q and β̂. Notice
that when t = 0, βt = β̂

|β̂| and when t = 1, βt = q. We will show in the following section

that t∗ =
γβq−γβ̂βγβ̂q
γββ̂−γβqγβ̂q

gives the minimum angle between β and our transformed estimator. (This
calculation of taking derivatives is not in section 5 so we will write it here since it is a slightly
more complicated version.)

Since both vectors lies on unit sphere, we have cos θβtβ = β>t β. We want to minimize the angle
between βt and β. That is the same as maximize the cosine value β>t β. By our definition,

β>t β =

β̂>β

|β̂| + tq>β

| β̂|β̂| + tq|
=
γβ̂β + tγβq

| β̂|β̂| + tq|
(6.3.0)

Denote the demoninator | β̂|β̂| + tq| as `t, we take derivative of β>t β, by quotient rule we have

∂

∂t
(β>t β) =

γβq`t
`2t
−
γβ̂β + tγβq

`2t

∂

∂t
`t (6.3.1)

12



We first simplify ∂
∂t
`t, notice that

`t = | β̂
|β̂|

+ tq| =

√
(
β̂

|β̂|
+ tq)>(

β̂

|β̂|
+ tq) =

√
(
β̂>

|β̂|
+ tq>)(

β̂

|β̂|
+ tq) (6.3.2)

Multiply the terms out, notice q, β̂|β̂| lies on unit sphere, q>q = 1 and β̂>β̂

|β̂|2 = 1.

`t =

√
1 +

2tβ̂>q

|β̂|
+ t2 =

√
1 + 2tγβ̂q + t2 (6.3.3)

Now we apply chain rule to find the derivative of `t

∂

∂t
`t =

1

2

2γβ̂q + 2t

`t
=
γβ̂q + t

`t
(6.3.4)

Plug into 6.3.1 and set the derivative to 0, we have

∂

∂t
(β>t β) =

γβq
`t
−

(γβ̂β + tγβq)(γβ̂q + t)

`3t
= 0 (6.3.5)

Use the result in 6.3.3, we get

γβq(1 + 2tγβ̂q + t2) = (γβ̂β + tγβq)(γβ̂q + t) (6.3.6)

Notice that the t2 term cancels out and indeed we can just solve for t,

tγβ̂qγβq − tγβ̂β = γββ̂γβ̂q − γβq ⇒ t =
γβ̂βγβ̂q − γβq
γβ̂qγβq − γββ̂

(6.3.7)

Thus, we get our result as the local minimum for the angle achieves at

t∗ =
γβ̂βγβ̂q − γβq
γβ̂qγβq − γββ̂

(6.3.8)

6.4 Estimate
Notice that β vector is not accessible, we will need an estimate for γβ̂β . The following theorem
gives an almost sure convergent estimate for asymptotic scenarios when p ↑ ∞.

Theorem 6 (Angle). γβ̂β = 1

|β̂| + δp where δp vanishes as p ↑ ∞.

Proof. First we multiply β from both sides of equation (6.1.0), we get

β̂>β = β>β + (X>X)−1X>eβ (6.4.0)

13



Notice that |β| = 1, β>β = |β|2 = 1, we have

γβ̂β|β̂| = 1 + (X>X)−1X>eβ (6.4.1)

Thus, our δp = 1

|β̂|(X
>X)−1X>eβ. Notice X>X ≈ pnσ2. We want to show 1

p
X>eβ goes to

zero as p ↑ ∞. Notice that
1

p
X>eβ =

1

p

p∑
i=1

(X>e)iβi (6.4.2)

where βi is the ith entry of constant vector β and (X>e)i =
∑n

j=1 ejiXj and (XTe)i are uncor-
related. Again by Kolmogorov strong law of large numbers, this term goes away according to our
assumptions (Chandra 1992).

We will discuss the estimators for the cosine angles in equation 6.3.8 about t∗. First, q is given
by our definition and β̂ is our preliminary Ordinary Least Square estimator. We only need to find
estimators for γβ̂β and γβq. When p is large, as we discussed in section 6.4, γβ̂β can be approached
by 1

|β̂| . And in section 2, the first lemma gives γβ̂q ≈
1

|β̂|γβq when p large. Thus, we can use

|β̂|γβ̂q to estimate γβq. This gives us an accessible estimator purely from the data. It converges
asymptotically to the most efficient estimator in the family when p ↑ ∞. Again this is based on
an accurate estimate of norm of β. There are various literature in estimating norm of regression
coefficients for users to use in real-world applications.

6.5 Geometric View
As we discussed in the beginning of the section, one of the reason that we use this unit-sphere
construction is that it gives an easy geometric perspective of our shrinkage.

Figure 1: Geometric Representation of the Shrinkage

The above is an image from my supervisor’s paper (Goldberg 2018). As we see on unit sphere,
we are moving our estimator h to any arbitrary constant vector b by the correction vector q. We
choose the vector of all ones as q since it is standard for James-Stein estimator but in fact it can be
anything on the sphere and could give a shrinkage effect.
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7 Numerical Results

7.1 Background and Model Setup
We take the Sharpe (1964) Capital Asset Pricing Model as a real life example for numerical ex-
periment. The Capital Asset Pricing Model states that the expected rate of return of an asset is
proportional to the expected market return with slope coefficient beta. In this case, Ordinary Least
Squares regression (OLS), or linear regression is used to obtain an estimation of betas of market
assets. In Vasieck’s paper ”A Note on Using Cross-Sectional Information in Bayesian Estimation
Of Security Betas” in 1973, he mentioned a linearly adjusted transformation used in Security Risk
Evaluation service by Merrill Lynch, Pierce, Fenner & Smith, Inc. of the form

b′ = 1 + k(b− 1)

where k is a constant for all stocks and b is our original OLS estimation. Notice that this is similar
to the James-Stein type estimator that we are using. In fact, this model has an empirical Bayes
interpretation. It is also the case that the number of stocks is very large compared to number of
observations.
Assume that the stock market follows the Capital Asset Pricing Model such that for each security
i we have

yit = βixt + eit, t = 1, 2, ..., T

where yit, t = 1, 2, ..., T are rates of return on the security i and xt, t = 1, 2, ..., T are returns
on a market index. eit, t = 1, 2, ..., T are specific returns of security i that satisfies Eeit = 0 and
independent for all t, i. The variance of eit is a value uniformly picked between 0.0004 and 0.0016.
We set number of stocks to be 500. T (number of trade days) to be 256. Now we can generate our
data according to parameters of the real market. We generate our true betas (i.e. β) using normal
distribution with mean 1 and standard deviation 0.32. Next, we generate the market indexes xt
using independent identical normal distribution with mean 0 and standard deviation 0.01 for each
t. By our assumption, the specific returns are generated using normal distribution with mean 0,
variance uniformly picked from 0.0004 to 0.0016, independent and identical for each t and each
security i. Now that we can calculate yit = βixt + eit for t = 1, 2, ..., 256 and i = 1, 2, .., 500. By
the Ordinary Least Squares estimation, our estimation for βi is given by

bi =
∑
t

(yit − ȳi)(xt − x̄)

/∑
t

(xt − x̄)2 (8)

Now that we have an estimation for beta of each stock, we apply the transformation of form

b′ = 1 + k(b− 1), k ∈ [0, 1] (9)

that adjust b towards the unit vector. Notice that when k = 1, b′ = b which gives our original OLS
estimation. When k = 0, b′ = [1, ..., 1] gives a constant estimation. Smaller k reduces the variance
of our estimation towards 1 and k contains the information about the slope of cross-sectional
regression of beta estimates.
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7.2 Numerical Experiments
Now fix β and repeat the process 100 times (that means we generate new yit and fit the model 100
times, calculate the angles using different transformation values k). For the angles we get from
100 simulations, we get a boxplot for each k ranging from 0 to 1 with different cosine angles in
radians. Figure 1 shows the plot of our result. As we can see, for k = 0, the constant estimation
has largest angle, meaning it is not a good estimation. The trend also shows that there is a local
minimum between k = 0.6 and k = 0.8, which gives the best estimation from our perspective.
This implies that the Ordinary Least Squares regression is indeed not the most optimal estimation
and we can make it better by applying a linearly adjusted transformation towards unity.

Figure 2: Simulation Results when variance of true beta is 0.25

Now we will use our method. Notice that the actual β is not accessible, so we cannot just iterate
all c values like we previously did. We use a setting of n = 50 and p = 1000. To simplify, the
variance of e is now set to be 0.032 instead of uniformly chosen from an interval. The other settings
are same as the previous data generating process. We only observe data X and Y . We follow the
algorithm and repeat 30 times. The plot of dispersion of different estimators is shown below.

Figure 3: An experiment on self-generated financial market data.
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As we can see, our transformed estimator has dispersion very close to the theoretical best estimator
in the class. The latter uses the information of true betas whereas our transformed estimator is
purely data-driven. It improves the accuracy of the OLS estimator and has low dispersion. This
can be particularly useful in portfolio optimization and to other financial interests.

8 Future Works
We will discuss some future works and potential development of this method. One important
aspect that we have mentioned previously is to estimate the norm of β. We proposed an unbiased
estimator that assumes we have no prior information about the vector β. In different cases this
might be improved. Some problems have known dispersion of β this can be solved very easily
(see Appendix). When n is small, there’s also literature on how to get an efficient estimator for
norm of β. Secondly, the target vector we shrink to here is vector of all ones or the ground mean
of β. Theoretically any vector can be used to shrink the OLS estimator and with (p + 1) arbitrary
vectors that spans the vector space, we might have a guaranteed optimal shrinkage. The problem is
more complicated geometrically and computationally but it will give more flexibility to the model
assumption. In addition, a lot of recent works focus on estimating prior for Empirical Bayes.
Two major categories including ”g-modeling” (Efron, 2014) and ”f-modeling”. As well as a more
geometric approach (Wager, 2014). Works on James-Stein and time series related research are also
discussed partially in appendix including (Senda, 2006). Last but not least, the rate of convergence
is also a topic of our interest. How fast does our estimator converges for different p and n settings
might be an interesting problem to explore. In some models (Dwivedi 2018) this has been studied
with nice results.
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9 Appendix

9.1 Formulas
We will list some useful formulas here. A common transformation from mean, dispersion and
norm: For any p−dimensional vector β , we have

|β|2 = pµ2
p(β)(1 + d2p(β)) (10)

So any two of the three quantities determines the other.

The following formulas provide a conversion from unit-mean plane to unit-sphere construction:
For any p−dimensional vectors x, y, we have

d2p(x, y) = (µ2
p(x)+d2p(x))+(µ2

p(y)+d2p(y))−2γxy

√
p(µ2

p(x) + d2p(x))
√
p(µ2

p(y) + d2p(y)) (11)

And similarly,

γxy =
d2p(x) + d2p(y)− d2p(x, y) + µ2

p(x) + µ2
p(y)

2
√
µ2
p(x) + d2p(x)

√
µ2
p(y) + d2p(y)

(12)

One special case is when we have vector of all ones q = (1, ..., 1)> ∈ Rp,

γxq =
µp(x)√

d2p(x) + µ2
p(x)

(13)

It is thus easy to derive a bijective relationship between our optimal constants:

c′ =
d2p(β̂) + d2p(β)− d2p(β, β̂)

2d2p(β̂)
and t∗ =

γβ̂βγβ̂q − γβq
γβ̂qγβq − γββ̂

9.2 Some Derivations
We can also derive the unit plane lemmas from unit-sphere expressions. The following lemmas on
unit-plane follows the sphere construction
(i) γβ̂e = |β|

|β̂|γβe + δp where δp → 0 as p→∞.

(ii) γβ̂β = |β|
|β̂| + δp where δp → 0 as p→∞.
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Therefore for p ↑ ∞, we have

d2p(β, β̂) =

(
1

γ2βq
+

1

γ2
β̂q

− 2
γββ̂
γβqγβ̂q

)

=

 |β|2

|β̂|2γ2
β̂q

+
1

γ2
β̂q

− 2
|β|2

|β̂|2γ2
β̂q


=

 1

γ2
β̂q

− |β|2

|β̂|2γ2
β̂q


(14)

Notice

γβ̂q =
β̂ · q
|β̂||q|

=

∑
β̂

|β̂|√p
So

d2p(β, β̂) = p|β̂|2
(

1− |β|
2

|β̂|2

)/(∑
β̂
)2

(15)

Notice that
∑p

i=1 β̂ = nµβ̂ and |β|2 = pµ2
β(1 + d2β), |β̂|2 = pµ2

β̂
(1 + d2

β̂
). We can simplify the

previous equation

d2p(β, β̂) = p|β̂|2
(

1− |β|
2

|β̂|2

)/(∑
β̂
)2

= p|β̂|2 − pµ2
β̂
|β|2
/(

pµβ̂

)2
=

1

pµ2
β̂

(|β̂|2 − |β|2)

(16)

9.3 Some Other Discussions
As we mentioned in the last section of the paper, some of the works on James-Stein estimators
that are different from our approach yet related to the problem we are trying to solve are discussed
here. We will discuss the following two papers.

9.3.1 Kim, T. H., White, H. (2001). James-Stein-type estimators in large samples with
application to the least absolute deviations estimator.

Modern statistics have focused on large sample data set and high-dimensional analysis. One of the
main aspects of CAPM beta estimation is that we have large sample sizes for number of stocks
and often short observations over a period of time. The original risk improvement of James-Stein
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estimator disappears under large sample size. This paper focuses on improving the asymptotic
risk using James-Stein type estimator and generalizes the James-Stein type of estimator to a large
sample size. The technique in the paper uses a combination of least absolute deviations (LAD)
estimator and the least square (LS) estimator. The paper provides rigorous mathematical assump-
tion and proof for finding the optimal estimator. It also applies the method using a combination
of data-dependent OLS estimator and base LAD estimator to show how it works. A Monte Carlo
experiment is performed to test the new JS-type estimator. There are a lot of candidates for the
data-dependent points used in the shrinkage method so the method might be able to work in a fairly
general setting.

9.3.2 Senda, M., Taniguchi, M. (2006). James–Stein estimators for time series regression
models.

This paper purposes a time series version of James-Stein estimator under residues generated by
Gaussian stationary process. It gives the inadmissibility of the estimator under some assumptions.
We will need finite dispersion and non-singular autocovariance matrix in order to perform the
method. The paper uses tensor product to calculate the optimal shrinking constant that reduces
the mean square error loss. The paper also shows some numerical result in simple spectrums, for
example, when the residues are scalars. The result of the paper provides that it is applicable to per-
form James-Stein type regression even if exogeneity is not preserved. This is not directly related
to our research under OLS regression, but we do get evidence that the JS approach could work
relatively well in real world data where residuals are correlated.
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