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Chapter 31-5: Elliptic PDEs Using the Relaxation Method.

Relaxation methods are important especially in the solution of linear systems used to model elliptic partial
diŀerential equations, such as Laplace's equation and its generalization, Poisson's equation. These equations
describe boundary-value problems, in which the solution-function's values are speciŁed on the boundary of a
domain; the problem is to compute a solution also on its interior. Relaxation methods are used to solve the linear
equations resulting from a discretization of the diŀerential equation, for example by Łnite diŀerences.

Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's
equation, it resembles repeated application of a local smoothing Łlter to the solution vector. These are not to be
confused with relaxation methods in mathematical optimization, which approximate a diŃcult problem by a
simpler problem whose "relaxed" solution provides information about the solution of the original problem.

Solve the Laplace heat transfer equation of a plate with one side insulated (zero Neumann BC), two sides held at a
Łxed temperature (Dirichlet condition) and one side touching a component that has a sinusoidal distribution of
temperature. The boundary conditions, expressed numerically, are:

(Problem and solution modiŁed slightly from https://barbagroup.github.io/essential_skills_RRC/laplace/1/
(https://barbagroup.github.io/essential_skills_RRC/laplace/1/))

The steady state heat equation looks like

where T is a temperature that has reached a steady state. This can be modiŁed slightly so that

where  is the generic dependent variable.

In [32]:

Start with an initial guess for the solution,  and use the discrete Laplacian to get an update,  then
continue on computing  until the remaining error reaches a suŃciently small size. Note that  is not a time
index here, rather an index corresponding to the number of iterations performed in the relaxation scheme.

At each iteration, updated values  are computed in a logical way so that they converge to a set of values
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from matplotlib import pyplot
import numpy
%config InlineBackend.figure_formats = ['svg']
from matplotlib import rcParams
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satisfying Laplace's equation. The system will reach equilibrium only as the number of iterations tends to , but
the equilibrium state can be approximated by iterating until the change between one iteration and the next is very
small.

The most intuitive method of iterative solution is known as the Jacobi method, in which the values at the grid
points are replaced by the corresponding weighted averages:

This method converges to the solution of Laplace's equation.

In [33]:

In the iterative solution of Laplace's equation, boundary conditions are set and the solution "relaxes" from an
initial guess to meld the boundaries together smoothly, based on the values of the boundary conditions. The
initially assigned guess will be  everywhere.

In [34]:

An appropriate plotting setting is deŁned in the above cell. The commented line is obsolete in newer Matplotlib
releases, and is replaced with the current version in the line below it.

Analytical solution

The Laplace equation with the boundary conditions listed above has an analytical solution, given by

where  and  are the length of the domain in the  and  directions, respectively.

In [35]:

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import

def plot_3D(x, y, p):
'''Creates 3D plot with appropriate limits and viewing angle

    Parameters:
    ----------
    x: array of float
        nodal coordinates in x
    y: array of float
        nodal coordinates in y
    p: 2D array of float
        calculated potential field

    '''
fig = pyplot.figure(figsize=(11,7), dpi=100)
#ax = fig.gca(projection='3d')
ax = fig.add_subplot(projection='3d')
X,Y = numpy.meshgrid(x,y)
surf = ax.plot_surface(X,Y,p[:], rstride=1, cstride=1, cmap=cm.viridis,

linewidth=0, antialiased=False)

ax.set_xlim(0,1)
ax.set_ylim(0,1)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_zlabel('$z$')

view_init(30 45)

def p_analytical(x, y):
X, Y = numpy.meshgrid(x,y)
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At this point the analytical solution can be tested for reasonableness by comparing output with the plot_3D
function written above.

In [36]:

In [37]:

Inasmuch as the analytical solution is the basis of the plot, the Łnal numerical solution, following relaxation,
should closely resemble it.

In [38]:

To compare two successive Łelds during the iteration, the accepted method is consideration of the diŀerence, or
L2norm. In order to avoid allowing the size of the grid to inłuence the perception of the value of the L2norm, it is
necessary to normalize it by dividing by the norm of the potential Łeld at iteration  which results in an expression
for the normalized quantity as

p_an = numpy.sinh(1.5*numpy.pi*Y / x[-1]) /\
    (numpy.sinh(1.5*numpy.pi*y[-1]/x[-1]))*numpy.sin(1.5*numpy.pi*X/x[-1])

return

nx = 41
ny = 41

x = numpy.linspace(0,1,nx)
y = numpy.linspace(0,1,ny)

p_analytical( )

plot_3D( )

def L2_error(p, pn):
return sqrt( (( )**2)/ ( **2))
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In [39]:

The initial values of the potential Łeld are zero everywhere, according to initial guess, except at the boundary,
where non-zero values are displayed. As a formula it can be expressed as

It may be helpful to plot a visualization of the initialized domain to verify the relaxation process.

In [40]:

The plot below, it must be remembered, is only of the initialized domain, and does not represent an actual state. It
does verify that no non-zero function values are being generated anywhere except on the boundary.

def laplace2d(p, l2_target):
'''Iteratively solves the Laplace equation using the Jacobi method

    Parameters:
    ----------
    p: 2D array of float
        Initial potential distribution
    l2_target: float
        target for the difference between consecutive solutions

    Returns:
    -------
    p: 2D array of float
        Potential distribution after relaxation
    '''

l2norm = 1
pn = numpy.empty_like(p)
while l2norm > l2_target:

pn = p.copy()
p[1:-1,1:-1] = .25 * (pn[1:-1,2:] + pn[1:-1, :-2] \

+ pn[2:, 1:-1] + pn[:-2, 1:-1])

##Neumann B.C. along x = L
p[1:-1, -1] = p[1:-1, -2]     # 1st order approx of a derivative 
l2norm = L2_error(p, pn)

return

##variable declarations
nx = 41
ny = 41

##initial conditions
p = numpy.zeros((ny,nx)) ##create a XxY vector of 0's

##plotting aids
x = numpy.linspace(0,1,nx)
y = numpy.linspace(0,1,ny)

##Dirichlet boundary conditions
[ 1,:] sin(1.5* pi* / [ 1])
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In [41]:

A target L2norm diŀerence of  can easily be inserted into the relaxation stack and used for a visualization.

In [42]:

In [43]:

plot_3D( )

laplace2d( (), 1e-8)

plot_3D( )
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If the resulting plot looks like the analytical solution, that is to the credit of the relaxation method. The problem
source site, cited above, goes into a convergence analysis for this problem, which seems enlightening and which
could be very helpful for any serious work undertaken with the present method.
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