Topic 8.9, 8.7 Worksheet

1. Without a calculator, determine the pH range of the buffers given below:

Buffer	K_a of acid or K_b of base	pH range
A	$K_a = 1.3 \times 10^{-4}$	
В	$K_a = 5.3 \times 10^{-8}$	
С	$K_{b} = 7 \times 10^{-3}$	

- 2. A buffer is created by mixing equal volumes of equimolar weak acid and a salt containing the conjugate base of the weak acid. A little acid or base has been added to change the concentrations of the salt or acid. Does the pH of the buffer increase, decrease, or remain the same when ...
 - a. the concentration of the salt is greater than the concentration of the acid. Explain your reasoning in terms of the Henderson-Hasselbalch equation.
 - b. the concentration of the acid is greater than the concentration of the salt. Explain your reasoning in terms of the Henderson-Hasselbalch equation.
 - c. the concentration of the acid and salt remain in the same ratio. Explain your reasoning in terms of the Henderson-Hasselbalch equation.
- Without a calculator, determine the pH of a buffer in the following situations. The pKa of the buffer is 3.08.
 a. 20 mL of 0.1 M weak acid is mixed with 20 mL of 0.1 M salt.
 - b. 20 mL of 0.1 M weak acid is mixed with 20 mL of 1.0 M salt.
 - c. 20 mL of 0.1 M weak acid is mixed with 200 mL of 1.0 M salt.
 - d. 200 mL of 0.1 M weak acid is mixed with 20 mL of 0.1 M salt.

- 4. Determine the molarity of the salt created and the resulting pH for the following situations. In each case, the acid being used is 20 mL of $0.10 \text{ M HC}_3\text{H}_5\text{O}_3$ with a K_a of 8.3×10^{-4} .
 - a. The acid is mixed with 10 mL of 0.10 M NaOH.

b. The acid is mixed with 5 mL of 0.10 M NaOH.

- c. The acid is mixed with 15 mL of 0.10 M NaOH.
- Which species is dominant, the acid or the conjugate base of the acid, if ... a. the pH < pKa.
 - b. the pH > pKa.
 - c. the pH = pKa.